期刊文献+

两种解相关算法的DOA估计性能研究

Study of DOA Estimation Performance for Correlated Signals by Two Decorrelating Algorithms
下载PDF
导出
摘要 MUSIC算法能对独立信号的波达方向(DOA)进行有效估计,但该算法对相干信号或强相关信号进行DOA估计时,算法性能会随着相关系数的增加而急剧恶化甚至失效.针对该问题,利用前后向空间平滑技术与修正MU—SIC算法进行去相关,研究了它们去相关的基本原理及优缺点;利用MUSIC算法通过实验仿真对相关信号的波达方向估计性能进行了研究,分析了信号间相关系数对前后向空间平滑算法与修正MUSIC算法的测向性能的影响,并验证了算法去相关的有效性. MUSIC algorithms can process DOA estimation for uncorrelated signals. This algorithm gives poor performance or even is disabled in coherent signals or strong correlation. To solve this problem, the paper studies the decorrelating algorithms, forward-back spatial smoothing and mod- ified MUSIC. In the paper, the correlated signals' DOA estimation performance is analyzed in de- tail by using the two algorithms, and the algorithms~ decorrelating theory and characteristics are also studied. Finally,the simulation results about the correlated coefficient and algorithms' DOA performance under different correlated coefficients is given, and the paper analyses the interrela- tion between correlated coefficient and algorithms' DOA performance, and show that the algo- rithms are effective in decorrelation.
出处 《军械工程学院学报》 2012年第4期67-71,共5页 Journal of Ordnance Engineering College
关键词 波达方向 前后向空间平滑 修正MUSIC 相关系数 direction-of-arrival forward-backward spatial smoothing modified MUSIC correlated coefficient
  • 相关文献

参考文献9

  • 1STOICA P,NEHORAI A. MUSIC,maximum likelihood,and Cramer-Rao bound[J].IEEE Transactions on Acoustics,Speech and Signal Processing,1989,(05):720-741.
  • 2MOSTAFA K,ARTHUR J B,SHAN Tiejun. The statistical performance of the music and the minimumnorm algorithms in resolving plane waves in noise[J].IEEE Transactions on Acoustics,Speech and Signal Processing,1986,(04):331-341.
  • 3吴国庆,陈善继.基于解相干的MUSIC算法估计性能分析[J].现代电子技术,2011,34(7):94-96. 被引量:4
  • 4高星辉,张承云,常鸿森.改进MUSIC算法对信号DOA的估计[J].系统仿真学报,2005,17(1):223-224. 被引量:12
  • 5李海森,周天,朱志德,孙圣和.前后向空间平滑对相关信号源的DOA估计性能[J].哈尔滨工业大学学报,2007,39(3):416-419. 被引量:8
  • 6王永良;陈辉;彭应宁.空间谱估计理论与算法[M]北京:清华大学出版社,200999-100.
  • 7SHAN Tiejun,MATI W,THOMAS K. On spatial smoothing for Direction-of-Arrival estimation of coherent signals[J].IEEE Transactions on Acoustics,Speech and Signal Processing,1985,(04):806-811.
  • 8KUNDU D. Modified MUSIC algorithm for estimating DOA of signals[J].Signal Processing,1996,(01):85-89.doi:10.1016/0165-1684(95)00126-3.
  • 9何子述,黄振兴,向敬成.修正MUSIC算法对相关信号源的DOA估计性能[J].通信学报,2000,21(10):14-17. 被引量:65

二级参考文献30

  • 1路鸣,保铮.改善MUSIC空间谱估计分辨率的后处理算法[J].电子学报,1990,18(4):57-62. 被引量:6
  • 2[1] STOICA P,NEHORAI A.MUSIC,maximum likelihood,and Cramer-Rao bound[J].IEEE Trans on ASSP,May 1989,37(5):720-741.
  • 3[2] KAVEH M,BARABELL A J.The statistical performance of the MUSIC and the minimum-norm algorithms in resolving plane waves in noise[J].IEEE Trans on ASSP,April 1986,34(4):331-341.
  • 4[3] SHAN T J,WAX M,KAILATH T.On spatial smoothing for direction-of-arrival estimation of coherent signals[J].IEEE Trans on ASSP,Aug 1985,33:806-811.
  • 5[4] WILLIAMS R T,PRASAD S,MAHALANABIS A K,et al.An improved spatial smoothing technique for bearing estimation in a multipath environment[J].IEEE Trans on ASSP,April 1988,36:425-432.
  • 6[5] TAGA F,SHIMOTAHIRA H.A novel spatial smoothing technique for the MUSIC algorithm[J].IEICE Trans commun,1995,78-B:1513-1517.
  • 7[6] KUNDU D.Modified MUSIC algorithm for estimating DOA of signals[J].Signal Processing,1996,(48):85-89.
  • 8PILLAI S U,KWON B H.Forward/back spatial smoothing techniques for coherent signal identification[J].IEEE Trans.on Acoustics,Speech and Signal Processing,1989,37(1):8-15.
  • 9KUNDU D.Modified MUSIC algorithm for estimating DOA of signals[J].Signal processing,1996,48(3):85-89.
  • 10YAN H Q,FAN H H.Wideband cyclic MUSIC algorithms[J].Signal Processing,2005,85(3):643-649.

共引文献83

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部