期刊文献+

加权Bergman空间上的Toeplitz算子的数值域

The Numerical Range of a Toeplitz Operator on the Weighted Bergman Space
下载PDF
导出
摘要 Bergman空间是一类特殊的Hilbert空间,其上可以定义Toeplitz算子,进而可以讨论此类算子的数值域.若将Bergman空间推广到加权Bergman空间,也可以讨论其上的Toeplitz算子的数值域.本文主要讨论加权Bergman空间上Toeplitz算子的数值域的性质,并得到了一些非常有意义的结论. The Bergman space is a Hilbert space,we can define a Toeplitz operator on this space and study the numerical range of this operator.On the weighted Bergman space,we can also define a Toeplitz operator.In this paper,we discuss the properties of the numerical range of a Toeplitz operator on the weighted Bergman space,and get some useful results.
作者 孔德尧 张波
出处 《鞍山师范学院学报》 2012年第4期1-6,共6页 Journal of Anshan Normal University
关键词 加权BERGMAN空间 TOEPLITZ算子 数值域 自伴算子 The weighted Bergman space Toeplitz operator The numerical range Spectrum Self-adjoint operator
  • 相关文献

参考文献11

  • 1P R Halmos. A Hilbert space Problem Book[ M ]. Van Nostrand: Princeton, N J, 1967.
  • 2J G Tstampfli. Extreme points of the numerical range of a Hyponormal operator[ J ]. Michigan Math J, 1966 (13 ) :87-89.
  • 3E M Klein. The numerical range of a Toeplitz operator[J]. Proe Amer Math Soe,1972(35) :101-I03.
  • 4G Mcdonald,C Sundberg. Toeplitz operator on the disc[J]. Indiana Univ Math J, 1979(28) :595-11.
  • 5J K Thukral. The numerical range of a Toeplitz operator with harmonic symbol[ J]. J Operator Theory, 1995 (34) :213-216.
  • 6Abrown,P R Halmo. Algebraic properties of Toeplitz Operators[J]. J Reine Angew Math,1963/1964(213) :89-102.
  • 7J Arazy, S D Sisher, J Peetre. Hankel operators on weighted Bergman spaces [ J ]. American J Math, 1988 (110) :989-1053.
  • 8Vsheldon Axler, Pamela Gorkin. Algebras on the disk and doubly commuting multiplication operators [ J ]. Trans Amer Math Soc, 1988 (309) : 711-723.
  • 9Haakan Hedenmalm, Beris Korenslum, Kehe Zhu. Theory of Bergman Spaces [ J ]. London: Springer-vedag,2000.
  • 10Ronald, G Douglas. Banaeh Algebra Techniques in Operator Theory [ M ]. London: Springer-Verlag, 1972.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部