期刊文献+

满足方程xy-yx-(xy-yx)^nZ的环的结构 被引量:1

Structure of rings satisfying equation xy-yx= (xy-yx)^nz
下载PDF
导出
摘要 借助于某种换位子等式,给出SZC环的定义,研究SZC环的一些性质.主要证明了如下结果:①SZC环是CN环和ZC环;②R为强正则环当且仅当R为SZC环和正则环;③设R为SZC环且C(R)≠R,若R为素环,则R为交换环;④R为Abel环当且仅当对任意e∈E(R),任意x∈R,存在n=n(e,x)>1,z=ze,x∈R,使得ex-xe=(ex-xe)nz;⑤R为CN环当且仅当对任意x∈N(R),任意y∈R,存在n=n(x,y)>1,z=zx,y∈N(R),使得xy-yx=(xy-yx)nz. Using certain identities on commuattors of rings, the author gives the definition of SZC rings and introduces some properties of SZC rings. The following results are obtained: ① SZC rings are CN and ZC; ②R is a strongly regular ring if and only if R is a regular ring and SZC ring; ③Let R be a SZC ring and C(R)≠R. If R is prime, then R is commutative; ④ R is an Abel ring if and only if for any eEE(R), z∈R, there exist n-n(e,x)〉1,z=zx.y,∈R, such that ez-zg-(ex-xe)^nz; ⑤ R is a CN ring if and only if for any x∈N(R), y∈R, there exist n-n(x,y)〉1,z=zx.y∈N(R), such thatzy-yz-(xy-yx)^nz.
出处 《扬州大学学报(自然科学版)》 CAS CSCD 北大核心 2012年第3期5-7,19,共4页 Journal of Yangzhou University:Natural Science Edition
基金 国家自然科学基金资助项目(11171291) 江苏省高校自然科学基金资助项目(11KJB110019)
关键词 ZC环 CN环 SZC环 交换环 ZC rings CN rings SZC rings commutative rings
  • 相关文献

参考文献10

  • 1HERSTEIN I N. A condition for the commutativity of rings [J]. Canad J Math, 1957, 9(3):583-586.
  • 2PUTCHA M S, WILSON R S, YAQUB A. Structure of rings satisfying certain identities on commutators [J]. Proc Amer Math Soc, 1972, 32(1): 57-62.
  • 3KIM N K, LEE Y. Extensions of reversible rings [J]. J Pure Appl Algebra, 2003, 185(1/3): 207-223.
  • 4KIM J Y. Certain rings whose simple singular modules are GP injective [J]. Proc Japan Acad: Ser A Math Sci, 2005, 81(7): 125-128.
  • 5HWANG S U, JEON Y C, PARK K S. On NCI rings [J]. Bull Korean Math Soc, 2007, 44(2): 215-223.
  • 6DRAZIN M P. Rings with central idempotent or nilpotent elements [J]. Proc Edinburgh Math Soc, 1958, 9(2): 157-165.
  • 7熊丽丽,李男杰,魏俊潮.CN-环[J].扬州大学学报(自然科学版),2011,14(2):7-9. 被引量:8
  • 8屈寅春,范志勇,魏俊潮.强自反环[J].扬州大学学报(自然科学版),2011,14(3):9-12. 被引量:1
  • 9刘绍学,郭晋云,朱彬,等.环与代数[M].2版.北京:科学出版社,2009:310.
  • 10FEIGELSTOCK S. A note on subdirectly irreducible rings[J]. Bull Austral Math Soc, 1984, 29(1) : 137-141.

二级参考文献20

  • 1KIM N K, LEE Y. Extensions of reversible rings [J].J Pure Appl Algebra, 2003, 185(1/3) : 207-223.
  • 2NICHOLSON W K. Lifting idempotents and exchange rings [J].Trans Am Math Soc, 1977, 229(2) : 269-278.
  • 3YU Hua ping. On quasi-duo rings[J]. Glasgow Math J, 1995, 37(1): 21 -31.
  • 4YU Hua-ping. Stable range one for exchange rings [J]. J Pure Appl Algebra, 1995, 98(1) :105-109.
  • 5WEI Jun-chao, LI I.i bin. Quasi-normal rings [J]. Commun Algebra, 2010, 38(6) : 1855-1868.
  • 6WEIJunchao, LILi-bin. Weakly normal rings[J].TurkJ Math, 2011, 35(1): 1 11.
  • 7KIM J Y. Certain rings whose simple singular modules are GP-injective [J]. Proc Jpn Acad, 2005, 81(2) : 125- 128.
  • 8WEI Jun-chao, LI Li-bin. Nilpotent elements and reduced rings [J]. Turk J Math, 2011, 35(2): 341-353.
  • 9DRAZIN M P. Rings with central idempotent or nilpotent elements [J]. Proc Edinburgh Math Soc, 1958, 9(2) 157-165.
  • 10REGE M B. On von Neumann regular rings and SF-rings [J]. Math Jpn, 1986, 31(6) : 927-936.

共引文献7

同被引文献9

  • 1魏俊潮.直接有限环[J].扬州大学学报(自然科学版),2005,8(2):1-3. 被引量:8
  • 2WEI J C. Generalized weakly symmetrierings [J]. J Pure Appl Algebra, 2014, 218(5) : 1594 1063.
  • 3WANG L, WEI J C. Weakly semieommutative rings and strongly regular rings [J]. Kyungpook Math J, 2014, 54(1) : 65-72.
  • 4QU Y C, WEI J C. Ring whose nilpotent elements form a Lie ideal [J]. Studia Sci Math Hungar, 2014, 51(2) : 271-284.
  • 5NICHOLSONWK, YOUSIFMF. On a theorem of Camillo [J]. CommunAlgebra, 1995, 23(14): 5309 5314.
  • 6AWTAR R. A remark on the commutativity of certain rings [J]. Proc Amer Math Soc, 1973, 41(4) . 370-372.
  • 7田承志,傅昶林,郭元春.结合环的几个交换性定理[J].吉林大学自然科学学报,1982(3):1317.
  • 8魏宗宣.关于半素环交换性的一点注记[J].数学研究与评论,1985,5(4):109-110.
  • 9周颖,李德才,魏俊潮.ZY环[J].扬州大学学报(自然科学版),2014,17(2):12-15. 被引量:3

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部