摘要
借助于某种换位子等式,给出SZC环的定义,研究SZC环的一些性质.主要证明了如下结果:①SZC环是CN环和ZC环;②R为强正则环当且仅当R为SZC环和正则环;③设R为SZC环且C(R)≠R,若R为素环,则R为交换环;④R为Abel环当且仅当对任意e∈E(R),任意x∈R,存在n=n(e,x)>1,z=ze,x∈R,使得ex-xe=(ex-xe)nz;⑤R为CN环当且仅当对任意x∈N(R),任意y∈R,存在n=n(x,y)>1,z=zx,y∈N(R),使得xy-yx=(xy-yx)nz.
Using certain identities on commuattors of rings, the author gives the definition of SZC rings and introduces some properties of SZC rings. The following results are obtained: ① SZC rings are CN and ZC; ②R is a strongly regular ring if and only if R is a regular ring and SZC ring; ③Let R be a SZC ring and C(R)≠R. If R is prime, then R is commutative; ④ R is an Abel ring if and only if for any eEE(R), z∈R, there exist n-n(e,x)〉1,z=zx.y,∈R, such that ez-zg-(ex-xe)^nz; ⑤ R is a CN ring if and only if for any x∈N(R), y∈R, there exist n-n(x,y)〉1,z=zx.y∈N(R), such thatzy-yz-(xy-yx)^nz.
出处
《扬州大学学报(自然科学版)》
CAS
CSCD
北大核心
2012年第3期5-7,19,共4页
Journal of Yangzhou University:Natural Science Edition
基金
国家自然科学基金资助项目(11171291)
江苏省高校自然科学基金资助项目(11KJB110019)
关键词
ZC环
CN环
SZC环
交换环
ZC rings
CN rings
SZC rings
commutative rings