期刊文献+

一种基于数据划分的字符串相似连接外存算法 被引量:1

A Data-Partition based Disk Algorithm for String Similarity Join
下载PDF
导出
摘要 字符串相似连接操作具有广泛应用,因而将着重研究基于编辑距离的字符串相似连接。而现有的字符串相似连接算法大多为内存算法。实际应用中的数据集越来越大,有必要针对超大规模数据集研制字符串相似性连接外存算法。利用组合频率向量划分数据集,并提出了基于编辑距离的字符串相似性连接外存算法框架,证明了磁盘调度问题的难度并提出了不同的启发式磁盘调度方法。此外,还提出了基于该外存算法框架实现字符串相似性连接增量式计算的方法。实验结果表明,数据划分方法可以有效地过滤不相关的数据子集;磁盘调度算法能够有效减少磁盘IO次数;外存算法是高效的;增量式计算方法能够高效地处理数据更新。 String similarity join has a variety of applications. This paper focuses on the study of disk algorithms for edit string similarity join. The existing algorithms for this problem are all memory algorithms. It is necessary to study the disk algorithms, since the sizes of nowadays datasets are becoming bigger and bigger. The paper proposes to partition dataset into small chunks via combined frequency vec- tors, and implements a disk-algorithm framework. The disk scheduling problem is proved to be NP-complete, and several heuristics are pro- posed to solve this problem. The incremental computation, via the proposed disk algorithm framework, is also discussed. Experiments verify the key idea that similarity join based on partition can prune large amount of data subset pairs and the number of IO is reduced obviously and efficiently, which lay the foundation for future disk algorithms.
出处 《智能计算机与应用》 2012年第5期31-34,38,共5页 Intelligent Computer and Applications
关键词 字符串相似连接 编辑距离 外存算法 数据划分 String Similarity Join Eclit Distance Disk Algorithm Data Partition
  • 相关文献

参考文献12

  • 1METWLLY A,AGRAWAL D,ABBADI A E. Detectives:detecting coalition hit inflation attacks in advertising networks streams[A].2007.241-250.
  • 2JI S,LI G,LI C. Efficient interactive fuzzy keyword search[A].2009.371-380.
  • 3DONG X L,HALEVY A Y,YU C. Data integration with uncertainty[A].2007.687-698.
  • 4CHAUDHURI S,GANTI V,KAUSHIK R. A primitive operator for similarity joins in data cleaning[A].2006.
  • 5HENZINGER M R. Finding near-duplicate web pages:a largescale evaluation of algorithms[A].2006.284-291.
  • 6LI G,DENG D,WANG J. Pass-Join:A partition-based method for Similarity Joins[A].2011.
  • 7WANG J,LI G,FENG J. Trie-join:efficient trie-based string similarity joins with edit-distance constraints[A].2010.
  • 8XIAO C,WANG W,LIN X. Ed-join:an efficient algorithm for similarity joins with edit distance constraints[J].PVLDB,2008,(01):933-944.
  • 9WAGNER R A,FISCHER M J. The string-to-string correction problem[J].Journal of the ACM,1974.168-173.
  • 10BAYARDO R J,MA Y,SRIKANT R. Scaling up all pairs similarity search[A].2007.131-140.

同被引文献19

  • 1LI G, DENG D, WANG J, et al. Pass-Join: a partition-based method for similarity joins [J]. Proceedings of the VLDB endowment, 2011, 5(3): 253-264.
  • 2JIANG Y, DEND D, WANG J, et al. Efficient parallel partition-based algorithms for similarity search and join with edit distance constraints [C]// Proceedings of the Joint EDBT/ICDT 2013 Workshops. New York: ACM, 2013: 341-348.
  • 3LU J, LIN C, WANG W, et al. String similarity measures and joins with synonyms [C]// Proceedings of the 2013 ACM SIGMOD International Conference on Management of Data. New York: ACM, 2013: 373-384.
  • 4ARASU A, GANTI V, KAUSHIK R. Efficient exact set-similarity joins [C]// Proceedings of the 32nd International Conference on Very Large Data Bases. [S.l.]: VLDB Endowment, 2006: 918-929.
  • 5XIAO C, WANG W, LIN X. Ed-Join: an efficient algorithm for similarity joins with edit distance constraints [J]. Proceedings of the VLDB endowment, 2008, 1(1): 933-944.
  • 6WANG J, FENG J, LI G. Trie-Join: efficient trie-based string similarity joins with edit-distance constraints [J]. Proceedings of the VLDB endowment, 2010, 3(1/2): 1219-1230.
  • 7METWALLY A, FALOUTSOS C. V-SMART-Join: a scalable MapReduce framework for all-pair similarity joins of multisets and vectors [J]. Proceedings of the VLDB endowment, 2012, 5(8): 704-715.
  • 8DONG X, SRIVASTAVA D. Big data integration [C]// ICDE 2013: Proceedings of the 2013 IEEE 29th International Conference on Data Engineering. Piscataway, NJ: IEEE, 2013: 1245-1248.
  • 9CHRISTEN P. A survey of indexing techniques for scalable record linkage and deduplication [J]. IEEE transactions on knowledge and data engineering, 2012, 24(9): 1537-1555.
  • 10CHEN Q, HSU M. Continuous MapReduce for In-DB stream analytics [C]// OTM 2010: Proceedings of the 2010 International Conference on the Move to Meaningful Internet Systems. Berlin: Springer, 2010: 16-34.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部