期刊文献+

SUBGEOMETRIC RATES OF CONVERGENCE OF THE GI/G/1 QUEUEING SYSTEM

SUBGEOMETRIC RATES OF CONVERGENCE OF THE GI/G/1 QUEUEING SYSTEM
下载PDF
导出
摘要 The article deals with the waiting time process of the GI/G/1 queueing system.We shall give that the rate of convergence to the stationary distribution and the decay of the stationary tail only depend on the tail of the service distribution,but not on the interarrival distribution.We shall also give explicit criteria for the rate of convergence and decay of stationary tail for three specific types of subgeometric cases(Case 1:the rate function r(n)=exp(sn1/1+α),α〉0,s〉0;Case 2:polynomial rate function r(n)=nα,α〉0;Case 3:logarithmic rate function r(n)=logαn,α〉0). The article deals with the waiting time process of the GI/G/1 queueing system.We shall give that the rate of convergence to the stationary distribution and the decay of the stationary tail only depend on the tail of the service distribution,but not on the interarrival distribution.We shall also give explicit criteria for the rate of convergence and decay of stationary tail for three specific types of subgeometric cases(Case 1:the rate function r(n)=exp(sn1/1+α),α〉0,s〉0;Case 2:polynomial rate function r(n)=nα,α〉0;Case 3:logarithmic rate function r(n)=logαn,α〉0).
出处 《Acta Mathematica Scientia》 SCIE CSCD 2012年第5期1983-1996,共14页 数学物理学报(B辑英文版)
基金 partially supported by the Fundamental Research Funds for the Central Universities (BUPT2011RC0703)
关键词 GI/G/1 queueing system subgeometric rate of convergence polynomial rate of convergence logarithmic rate of convergence GI/G/1 queueing system; subgeometric rate of convergence; polynomial rate of convergence; logarithmic rate of convergence
  • 相关文献

参考文献3

二级参考文献28

  • 1毛永华.Algebraic convergence for discrete-time ergodic Markov chains[J].Science China Mathematics,2003,46(5):621-630. 被引量:10
  • 2Levy, H. and Kleinrock, L., A queue with starter and a queue with vacations: Delay annlysis by decompostition, Opns. Res., 34, 1986, 426-436.
  • 3Levy, Y. and Yechiali, U., Utilization of idle time in an M/G/1 queueing system, Manag. Sci., 22, 1975, 202-211.
  • 4Fuhrman, S., A note on the M/G/1 queue with server vacation, Opns. Res., 32, 1984, 1368-1373.
  • 5Harris, C. and Marchal, W., State dependence in M/G/1 server vacation models, Opns. Res., 36, 1988, 560-565.
  • 6Hou, Z. T. and Liu, Y. Y., Explicit criteria for several types of ergodicity of the embedded M/G/1 and GI/M/n queues, J. Appl. Prob., 41, 2004, 778-790.
  • 7Foss, S. and Sapozhnikov, A., On the existence of moments for the busy period in a single-server queue, Math. Oper. Res., 29, 2004, 592-301.
  • 8Anderson, W. J., Continuous-Time Markov Chains, An Applications-Oriented Approach, Springer-Verlag, New York, 1991.
  • 9Chen, M. F., From Markov Chains to Non-equilibrium Particle Systems, World Scientific, Singapore, 1992.
  • 10Meyn, S. P. and Tweedie, R. L., Stability of Markovian processes Ⅲ: Foster-Lyaunov criteria for Continuous-time rocesses, Adv. Appl. Prob., 25, 1993, 518-548.

共引文献24

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部