期刊文献+

RIEMANN BOUNDARY VALUE PROBLEMS FOR SOME K-REGULAR FUNCTIONS IN CLIFFORD ANALYSIS 被引量:3

RIEMANN BOUNDARY VALUE PROBLEMS FOR SOME K-REGULAR FUNCTIONS IN CLIFFORD ANALYSIS
下载PDF
导出
摘要 In this paper,we study the R m(m〉0) Riemann boundary value problems for regular functions,harmonic functions and bi-harmonic functions with values in a universal clifford algebra C(Vn,n).By using Plemelj formula,we get the solutions of R m(m〉0) Riemann boundary value problems for regular functions.Then transforming the Riemann boundary value problems for harmonic functions and bi-harmonic functions into the Riemann boundary value problems for regular functions,we obtain the solutions of R m(m〉0) Riemann boundary value problems for harmonic functions and bi-harmonic functions. In this paper,we study the R m(m〉0) Riemann boundary value problems for regular functions,harmonic functions and bi-harmonic functions with values in a universal clifford algebra C(Vn,n).By using Plemelj formula,we get the solutions of R m(m〉0) Riemann boundary value problems for regular functions.Then transforming the Riemann boundary value problems for harmonic functions and bi-harmonic functions into the Riemann boundary value problems for regular functions,we obtain the solutions of R m(m〉0) Riemann boundary value problems for harmonic functions and bi-harmonic functions.
作者 姜乐 杜金元
出处 《Acta Mathematica Scientia》 SCIE CSCD 2012年第5期2029-2049,共21页 数学物理学报(B辑英文版)
基金 Supported by NSF of China (11171260) RFDP of Higher Eduction of China (20100141110054)
关键词 Riemann boundary value problem harmonic function bi-harmonic function Plemelj formula Riemann boundary value problem; harmonic function; bi-harmonic function; Plemelj formula
  • 相关文献

参考文献16

  • 1Bernstein S. On the left linear Riemann problem in Clifford analysis. Bull Belg Math Soc, 1996, 3:557 576.
  • 2Xu Zhengyuan. Riemann boundary value problems for regular functions on Clifford algebra. Chinese Science Bulltin, 1987, 32(23): 476-477.
  • 3Zhang Zhongxiang, Du Jinyuan. On certain Riemann boundary value problems and singular integral equations in Clifford analysis. Chinese Ann Math, 2001, 22A(4): 421-426.
  • 4Lu Jianke. Boundary Value Problems for Analytic Fnctions. Singapore: World Sci Publ, 1993.
  • 5Muskhelishvili N I. Singular Integral Equations. Moscow: Nauka, 1968.
  • 6Gurlebeck K, Zhang Zhongxiang. Some Riemann boundary value problems in Clifford analysis. Math Meth Appl Sci, 2010, 33:287-302.
  • 7Zhang Zhongxiang. Some properties of operators in Clifford analysis. Complex Var, Elliptic Eq, 2007, 6(52): 455-473.
  • 8Zhang Zhongxiang. A revised higher order Cauchy-pompeiu formula in Clifford analysis and its application. J Appl Funct Anal, 2004, 2(3): 269-278.
  • 9Brack F, Delanghe R, Sommen F. Clifford Analysis. London: Pitman Books Ltd, 1982.
  • 10Delanghe R, Sommen F, Soudek V. Clifford Algebra and Spinor-Valued Functions. London: Kluwer Academic publishers, 1992.

同被引文献9

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部