摘要
证明了:任何一个非负Lebesgue可积函数的Lebesgue积分都可以表示成一个单调递减函数的Riemann积分(含Riemann瑕积分、Riemann无穷区间积分);任何一个Lebesgue可积函数的积分都可以表示成两个单调递减函数之差在(0,+∞)上的Riemann积分,或一个在(-∞,0)和(0,+∞)上单调递减函数的Riemann积分.
It has been proved in this paper that the Lebesgue integral of any non-negative Lebesgue integrable function can be expressed as the Riemann integral of a monotone decreasing function(including the Riemann improper integral and the Riemann infinite interval integral).The integral of any Lebesgue integrable function can be expressed as either the Riemann integral of the difference between two monotone decreasing functions defined in(0,+∞)or the Riemann integral of a monotone decreasing function respectively in(-∞,0) and(0,+∞).
出处
《西南师范大学学报(自然科学版)》
CAS
CSCD
北大核心
2012年第10期6-9,共4页
Journal of Southwest China Normal University(Natural Science Edition)
基金
四川省科技厅应用基础项目(2008JY01122)
四川省人事厅出国留学人员科技资助项目(川人社函(2010)32号文)
四川省人才培养与教学改革项目(P09264)
关键词
积分
瑕积分
无穷区间积分
integral
improper integral
infinite interval integral