期刊文献+

向量值弱Hardy鞅空间的弱原子鞅分解

On Weak Atomic Martingale Decompositions of Vector-Valued Weak Hardy Spaces of Martingales
下载PDF
导出
摘要 引入了弱原子鞅与正则弱原子鞅的概念,研究了两类Banach空间值弱Hardy鞅空间的弱原子鞅分解和正则弱原子鞅分解,所得结论揭示了弱Hardy鞅空间正则弱原子鞅分解的存在性与Banach空间一致光滑性和一致凸性之间的内在联系. The concepts of weak atomic martingales and regular weak atomic martingales are introduced before the weak atomic decompositions of martingale in two classes of Banach-space-valued martingale Hardy spaces are investigated in this paper.The results show that the internal relations between the existence of regular weak atomic decompositions of martingale and the uniform smoothness and uniform convexity of Banach spaces are exposed.
作者 郭红萍 于林
出处 《西南师范大学学报(自然科学版)》 CAS CSCD 北大核心 2012年第10期18-22,共5页 Journal of Southwest China Normal University(Natural Science Edition)
基金 湖北省自然科学基金(2010CDB10807) 湖北省教育厅自然科学研究计划重点项目(D20101204)
关键词 弱鞅空间 正则 弱原子鞅分解 weak martingale space regular weak atomic decomposition of martingales
  • 相关文献

参考文献9

  • 1LONG Rui-lin. Martingale Spaces and Inequalities [M].北京:北京大学出版社, 1993.
  • 2WEISZ F. Martingale Hardy Spaces and Their Applications in Fourier Analysis [M]. New York: Springe-Verlag, 1994.
  • 3WEISZ F. Bounded Operators in Weak Hardy Spaces and Applications [J]. Acta Math Hungar, 1998, 80(3): 249-264.
  • 4HOU Youliang & REN Yanbo School of Mathematics and Statistics, Wuhan University, Wuhan 430072, China,Department of Mathematics & Physics, Henan University of Science and Technology, Luoyang 471003, China.Weak martingale Hardy spaces and weak atomic decompositions[J].Science China Mathematics,2006,49(7):912-921. 被引量:15
  • 5HOU You-liang, REN Yan-bo. Vector-Valued Weak Martingale Hardy Spaces and Atomic Decompositions[J]. Acta Math Hungar, 2007, 115(3): 235-246.
  • 6J IAO Yong, PENG Li-hua. Weak Type Inequalities for Vector-Valued Martingales [J]. Statist Probab Lett, 2010, 80: 1128-1135.
  • 7JIAO Yong. Embeddings Between Weak Orlicz Martingale Spaces [J]. J Math Anal Appl, 2011, 378: 220-229.
  • 8MARTINEZ T, TORREA J. Boundedness of Vector-Valued Martingale Transforms on Extreme Points and Applications [J]. Aust MathSoc, 2004, 76: 207-221.
  • 9LIU Pei-de. Martingale Spaces and the Geometry of Banach Spaces[J]. Science in China: Series A, 1990(7) : 694-704.

二级参考文献1

共引文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部