期刊文献+

改进遗传算法选择特征在入侵检测中的应用

Application of Improved Ggenetic Algorithm to Select Features in Intrusion Detection,
下载PDF
导出
摘要 使用集成学习的方法进行入侵检测过程中,特征选择是关键的一个环节,最佳的特征组合,不但能够降低分类的错误率,而且在分类效率上也有很大的提高。对遗传算法进行改进,并用于入侵检测数据集的特征选择上,经实验证明此方法能够得到较好的集成效果。 Intrusion detection using ensemble learning, in the process, feature selection is an important part. The best feature combination, not only can reduce the classification error rate, but also can improve the classification efficiency. Improved genetic algorithm and using feature selection of intrusion detection data sets, and the experiment proved that this method can get a better integration of results.
出处 《电脑编程技巧与维护》 2012年第20期111-113,共3页 Computer Programming Skills & Maintenance
关键词 入侵检测 特征选择 遗传算法 Intrusion detection Feature selection Genetic algorithm
  • 相关文献

参考文献5

二级参考文献52

  • 1LEE W,STOLFO S,MOK K. A data mining framework for adaptive intrusion detection[EB/OL]. http://www.cs.columbia.edu/~sal/ hpapers/framework.ps.gz.
  • 2LEE W, STOLFO S J, MOK K. Algorithms for mining system audit data[EB/OL]. http://citeseer.ist.psu.edu/lee99algorithms.html. 1999.
  • 3KRUEGEL C, TOTH T, KIRDA E.Service specific anomaly detection for network intrusion detection[A]. Proceedings of the 2002 ACM Symposium on Applied Computing[C]. Madrid, Spain, 2002. 201-208.
  • 4LIAO Y, VEMURI V R. Use of text categorization techniques for intrusion detection[A]. 11th USENIX Security Symposium[C]. San Francisco, CA, 2002.
  • 5An extensible stateful intrusion detection system[EB/OL]. http://www.cs.ucsb.edu/~kemm/NetSTAT/doc/index.html.
  • 6ILGUN K. USTAT: A Real-Time Intrusion Detection System for UNIX[D]. Computer Science Dep University of California Santa Barbara, 1992.
  • 7The open source network intrusion detection system [EB/OL]. http://www.snort.org/.
  • 8KO C, FINK G, LEVITT K. Automated detection of vulnerabilities in privileged programs by execution monitoring[A]. Proceedings of the 10th Annual Computer Security Applications Conference [C]. Orlando, FL: IEEE Computer Society Press, 1994. 134-144.
  • 9Computer security & other applications of immunology[EB/OL]. http://www.cs.unm.edu/~forrest/isa_papers.htm.
  • 10GRUNDSCHOBER S. Sniffer Detector Report[R]. IBM Research Division Zurich Research Laboratory Global Security Analysis Lab, 1998.

共引文献279

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部