期刊文献+

微管内气泡的受迫振动 被引量:1

Forced oscillations of gaseous bubbles in microtubules
原文传递
导出
摘要 在气泡-液柱一维耦合振动模型的基础上对刚性微管两侧声压不相等时管内柱状气泡的轴向一维受迫振动进行了理论探索.声压不均匀分布不影响气泡线性振动时的共振频率,但振动幅度受到有效声压幅值的影响.利用逐级近似法分析了管内非线性振动气泡的基频、三倍频和三分之一分频振动的幅-频响应关系,结果表明当驱动声压超过0.1 MPa时,气泡振动处于非线性状态.非线性声响应特征主要表现为:基频和分频振动幅值响应的多值性;三倍频振动在低频区响应强于高频区;三分频振动在大于共振频率的频域内出现的概率更大. Based on the model for the one-dimensional coupled oscillation of bubble-liquid column in tube, a theoretical investigation of the forced oscillation of a cylindrical gaseous bubble in a microtubule is presented. For the case that the two acoustic pressures of mierotubule ends are not homogenous, the linear natural frequency is not affected, but its oscillating amplitude is influenced by the effective acoustic pressure amplitude. The relations between the amplitudes of fundamental, third and one third harmonic oscillations and the acoustic frequency are analyzed using the succession-level approximation method. Numerical results show that the bubble oscillates nonlinearly if the effective value of acoustic pressure exceeds 0.1MPa. It is found that the amplituds of fundamental, third and one third harmonic oscillations are multivalued, and the response of third harmonic oscillation is stronger in the region of lower frequencies. Furthermore, the third harmonic oscillation may be probably induced in the region of ω/ω0≥ 1.
出处 《物理学报》 SCIE EI CAS CSCD 北大核心 2012年第19期260-266,共7页 Acta Physica Sinica
基金 国家自然科学基金(批准号:10904068 10834009 11174138 81127901 11174139) 中央高校基本科研业务费专项资金(批准号:GK201002009) 陕西省自然科学基金(批准号:2010JQ1006)资助的课题~~
关键词 柱状气泡 受迫振动 非线性振动 声响应 cylindrical gaseous bubble, forced oscillations, nonlinear oscillations, acoustical response
  • 相关文献

参考文献17

  • 1Hu Y T, Qin S E Hu T, Ferrara K, Jiang Q 2005 Int. J. Nonlin. Mech. 411 341.
  • 2Qin S P, Hu Y T, Jiang Q 2006 IEEE. T. Ultrason. Ferr. 53 1322.
  • 3Freund J B 2008 Z Acoust. Soc. Am. 123 2867.
  • 4Cancelos S, Moraga F J, Lahey R T, Shain W, Parsons R H 2010 J. Acoust. Soc. Am. 128 2726.
  • 5Qin s E Ferrara K W 2007 Ultrasound Med. Biol. 33 1140.
  • 6Miao H Y, Gracewski S M, Dalecki D 2009 J. Acoust. Soc. Am. 126 2374.
  • 7Martynov S, Stride E, Saffari N 2009J. Acoust. Soc. Am. 126 2963.
  • 8Sassaroli E, and Hynynen K 2005 Phys. Med. Biol. 50 5293.
  • 9Gao F R, Hu Y T, Hu H P 20071nt. J. Solids. Struct. 44 7197.
  • 10Zhen H R. Dayton P A. Caskev C. Zhao S K. Oin S P. Ferrara KW 2007 Ultrasound Med. Biol. 33 1978.

同被引文献16

引证文献1

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部