期刊文献+

色散周期结构的辅助场时域有限差分法分析 被引量:3

Study of periodic dispersive structures using splitfield FDTD method
原文传递
导出
摘要 利用辅助场时域有限差分(FDTD)方法分析色散周期结构的斜入射问题.主要基于Floquet定理,在FDTD迭代式中引入辅助场量,结合变换的周期及吸收边界条件,解决了周期结构斜入射问题的电磁特性仿真.进一步将辅助场FDTD方法引入至色散周期结构的模拟,结合Z变换方法,给出了基于Drude色散模型的具体迭代公式.数值计算结果表明所构建方法的有效性及普适应. The dispersive periodic structures are simulated by the split-field finite difference time domain (FDTD) method. According to the Floquet theorem, a set of auxiliary elements are introduced into the FDTD iteration to deal with electromagnetic simulation of oblique incidence on periodic structures, by combining the periodic and absorption boundary condition. We here extend the split-field method to the study of periodic dispersive structures by combining the Z transformation method. The iterative equations of the Drude dispersive model are also provided. By Comparing analytical and other numerical results, the efficiency and wide applicability of our method are demonstrated.
出处 《物理学报》 SCIE EI CAS CSCD 北大核心 2012年第19期282-286,共5页 Acta Physica Sinica
基金 国家自然科学基金重点项目(批准号:60931002 61101064) 安徽省杰出青年基金(批准号:1108085J01) 安徽省高校重点项目(批准号:KJ2011A002 KJ2011A242)资助的课题~~
关键词 周期结构 辅助场 Drude模型 Z变换 periodic structure, split-field, Drude model, Z transform
  • 相关文献

参考文献12

  • 1Farahat N, Mittra R 2002 IEEEAntennas and Propagation society International Symposium 2 568.
  • 2Joannopoulos J D, Johnson S G, Winn J N Meade R D 2008 Pho- tonic crystals: Molding the flow of light (2nd Ed.) (Princeton N J: Princeton University Press).
  • 3Penciu R S, Aydin K, Kafesaki M, Koschny T, Ozbay E, Economou E N, Soukoulis C M 2008 Opt. Express 16 18131.
  • 4Tafiove A, Hagness S C 2005 Computational Electrodynamics: The Finite-Difference lime-Domain Method (3rd Ed.) (Artech House).
  • 5Harms P, Mittra R, Ko W 1994 IEEE Trans. Antennas Propagate 42 1317.
  • 6Roden A, Gedney S D 1998 IEEE Transactions on Microwave Theory and Techniques 46 p420.
  • 7Chu Y, Schonbrun E, Yang T, Crozier K B 2008 App. Phys. Lett. 93 181108.
  • 8Malynych S, Chumanov G 2003 J. AM. Chem. Soc. 125 2896.
  • 9Sullivan D M 1992 IEEE Transactions on Antennas and Propaga- tion 40 1223.
  • 10Belkhir A, Baida F 1 2008 Phys. Rev. E 77 056701.

同被引文献20

  • 1杨光杰,孔凡敏,梅良模.金属光子晶体禁带研究[J].光子学报,2007,36(10):1821-1823. 被引量:7
  • 2TAFLOVE A, HAGNESS S H. Computational electrodynamics: the finite-difference time-domain method [M]. London: ArtechHouse, 2000: 1-10.
  • 3HARMS P, MITTRA R, KO W. Implementation of the periodic boundary condition in the finite-difference time domain algorithm for FSS structures[J]. IEEE Transactions on Antennas and Propagation, 1994, 42(9): 1317 -1324.
  • 4AMINIAN A, SAMII Y R. Spectral FDTD: A novel technique for the analysis of oblique incident plane wave on periodic structures[J]. IEEE Transactions on Antennas and Propagation, 2006, $4(6) : 1818-1825.
  • 5VALUEV I, DEINEGA A, BELOUSOV S. Iterative technique for analysis of periodic structures at oblique incidence in the finite-difference time-domain method[J]. Optics Letters, 2008, 33(13): 1491-1493.
  • 6VALUEV I, DEINEGA A, BELOUSOV S. Implementation of the iterative finite-difference time-domaln technique for simulation of periodic structures at oblique incidence [J]. Computer Physics Communications, 2014, 185 : 1273 -1281.
  • 7FARAHAT N, MITTRA R. Analysis of frequency selective surfaces using the finite difference time domain method[J]. IEEE Transactions on Antennas and Propagation, 2002, 2 (8) : 568-571.
  • 8DEINEGA A, VALUEV L Subpicel smoothing for conductive and dispersive media in the FDTD method[J]. Optics Letters, 2007, 32(23) : 3429 3431.
  • 9DEINEGA A, JOHN S. Effective optical response of silicon to sunlight in the finite difference time-domain raethod[J]. Optics Letters, 2012, 37(1): 112- 114.
  • 10ZHAO Qian, ZHOU Ji, ZHANG Fu li, et al. Mie resonance-based dielectric metamaterials[J]. Materialstoday, 2009, 12(9): 60- 69.

引证文献3

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部