期刊文献+

临近空间单粒子串扰的解析模型 被引量:1

Analytical model of single event crosstalk in near space
原文传递
导出
摘要 随着尺寸不断缩减,串扰对单粒子效应的影响越来越重要.为了量化串扰效应对单粒子瞬态(SET)的影响,基于SET等效电路和互连线的6结点模型,利用所定义的导纳的四种规则,简化计算,推导了单粒子串扰(SEC)的解析模型.通过求导和泰勒公式,导出了串扰电压峰值的表达式.仿真结果显示,该解析模型与SPICE电路的一致性较好,平均相对误差为2.51%,最大误差为5.11%. With feature size scaling down, the influence of crosstalk on single event effect becomes more important. In order to analytically describe the influence of crosstalk effect on single event transient (SET), based on the equivalent circuits of SET and 6-node template model for interconnects, by using defined four rules of point admittance to simplify the calculation, the analytical model for single event crosstalk (SEC) is deduced. Through differentiating and Taylor series expansion theorem, the expression for the peak value of crosstalk voltage is achieved. The simulation results show that the analytical model is well consistent with SPICE circuits and average relative error is 2.51%, and max error is 5.11%.
作者 刘保军 蔡理
出处 《物理学报》 SCIE EI CAS CSCD 北大核心 2012年第19期367-375,共9页 Acta Physica Sinica
基金 国家自然科学基金(批准号:61172043) 陕西省自然科学基础研究计划重点项目(批准号:2011JZ015)资助的课题~~
关键词 单粒子串扰 解析模型 导纳 临近空间 single event crosstalk, analytical model,point admittance, near space
  • 相关文献

参考文献15

  • 1蔡明辉,韩建伟,李小银,李宏伟,张振力.临近空间大气中子环境的仿真研究[J].物理学报,2009,58(9):6659-6664. 被引量:13
  • 2Zheng B, Ren Q H, Liu Y J, Chu Z Y, Zhao F 2007 IEEE Interna- tional Symposium on Microwave, Antenna, Propagation, and EMC Technologies for Wireless Communications 2007 p769.
  • 3Appleton E 1964 Elec. Power 5 140.
  • 4王丽2010电讯技术50127.
  • 5Sayil S, Akkur A B, Gaspard Ⅲ N 2009 Microelec. J. 40 1000.
  • 6Sayil S, Rudrapati M S, Borra U K 2007 1EEE Reg. 5 Tech. Con- fer., Fayetteville, AR, 2007 p239.
  • 7Liu X, Ma G, Shao J, Yang Z, Wang G 2009 Microelec. Reliab. 49 170.
  • 8Fan C E Fang C H 2011 lnteg. 44 75.
  • 9Sayil S, Boorla V K, Yeddula S R 2011 IEEE Trans. Nulc. Sci. 58 2493.
  • 10Li D, David B, Pinaki M 2003 1EEE Trans, Comput.-Aided Des. Integ. Cir. Sys. 22 627.

二级参考文献6

共引文献23

同被引文献29

  • 1O’Neil A G, Antoniadis D A 1996 IEEE Trans. Electron Devices 43 911.
  • 2Song J J, Zhang H M, Hu H Y, Dai X Y, Xuan R X 2007 Chin. Phys. 16 3827.
  • 3Bindu B, Nandita D G, Amitava D G 2006 Solid-State Electronics 5 448.
  • 4Kumar M J, Vivek V, Nawal S 2007 Proceedings of the 20th International Conference on VLSI Design Bangalore, India, January 6–10, 2007 p189.
  • 5Qin S S, Zhang H M, Hu H Y, Qu J T, Wang G Y, Xiao Q, Shu Y 2011 Acta Phys. Sin. 60 058501 (in Chinese).
  • 6Jakub Q, Bogdan M 2007 Journal of Telecommunications and Information Technology 3 84.
  • 7Qu J T, Zhang H M, Qing S S, Xu X B, Wang X Y, Hu H Y 2011 Acta Phys. Sin. 60 098501 (in Chinese).
  • 8Arora N 2007 MOSFET Modeling for VLSI Simulation (Singapore: World Scientific Press) p12–68.
  • 9Kunihiro S 2000 IEEE Trans. Electron Devices 47 2372.
  • 10Kendall J D, Boothroyd A R 1986 IEEE Electron Devices Lett. 7 407.

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部