摘要
对K-NUC空间的乘积空间和LK-NUC空间的乘积空间进行了讨论,证明了:(1)若X、Y 分别是 K1- NUC空间,K2- NUC空间,1<P<+∞,则(X■Y)p为(K1+ K2- 1)- NUC空间。(2)引 入了LK-WH性质,并得到具有LK-WH性质的LNUC空间与LK-NUC空间等价.
The results are as follow: (1) Let X be (K1 - NUC) and Y be (K2 - NUC), then ((X■ Y)p(1 <P < +∞ ), is ((K1 + K2 - 1) - NUC). (2)By introducing and investigating (LK - WH)- property, we obtain that X is (LK - NUC) if and only if X is (LNUC) and has (LK -WH)- property.
出处
《安徽机电学院学报》
2000年第3期41-45,共5页
Journal of Anhui Institute of Mechanical and Electrical Engineering