期刊文献+

利用Gauss和与Jacobi和构造近似MUB和SIC-POVM 被引量:3

Constructions of approximately mutually unbiased bases and symmetric informationally complete positive operator-valued measures by Gauss and Jacobi sums
原文传递
导出
摘要 MUB(mutually unbiased bases)和SIC-POVM(symmetric informationally completepositive operator-valued measure)是量子信息中的两个重要研究对象.目前关于非素数幂维的完全MUB是否存在还没有确定的结果,对于SIC-POVM目前只有有限多种维数K有存在性结果或数值结果.于是很多弱化了内积条件的近似MUB和SIC-POVM被人们所考虑.本文使用Klappenecker等人给出的近似MUB和SIC-POVM的定义,利用Gauss和与Jacobi和对于素数方幂q给出了一类q1维q-近似MUB(AMUB)、一类q1维(q+1)AMUB以及q+1维qAMUB,还利用Gauss和给出了一类q1维近似SIC-POVM(ASIC-POVM). Mutually unbiased bases (MUB) and symmetric informationally complete positive operator-valued measure (SIC-POVM) are both important objects in quantum information theory.While people do not know if there exists a complete MUB for non-prime-power dimension,several versions of approximately MUB have been considered by relaxed the inner product condition.So far there are only finite number of K such that SICPOVMs in C k have been found.As in the MUB case,several versions of approximately SIC-POVM have been considered by relaxed the inner product condition.In this paper,we use the definitions of approximate MUB and SIC-POVM given by Klappenecker et al.For prime power q,we present simple constructions of q approximately MUB (AMUB) for dimension q-1,q+1 AMUB for dimension q-1,which shows the number of orthonormal bases of an AMUB in C k can be more than K+1,and q AMUB for dimension q+1 by Gauss and Jacobi sums.We also present a construction of approximately SIC-POVM (ASIC-POVM) in dimension q-1 by Gauss sum.
出处 《中国科学:数学》 CSCD 北大核心 2012年第10期971-984,共14页 Scientia Sinica:Mathematica
基金 国家自然科学基金(批准号:10990011)资助项目
关键词 MUB SIC-POVM Gauss和Jacobi和球面上的t设计 MUB SIC-POVM Gauss sum Jacobi sum complex spherical t-design
  • 相关文献

参考文献22

  • 1Klappenecker A, Rotteler M, Spharlinski I E, et al. On approximately symmetric informationally complete positive operator-valued measures and related systerns of quantum states. J Math Phys, 2005, 46:.
  • 2Planat M, Rosu H C, Perrine S. A surey of finite algebraic geometrical structures underlying mutually unbiased quantum measurements. Found Phys, 2006, 36: 1662-1680.
  • 3Roy A, Scott A J. Weighted complex projective 2-designs from bases: optimal state determination by orthogonal meaurements. J Math Phys, 2007,48: 072110.
  • 4Renes J M,. Blume-Kohout R, Scott A J, et al. Symmetric informationally complete quantum measurements. J Math Phys, 2004, 45: 2171.
  • 5Renes J M. Equiangular spherical codes in quantum cryptography. Quantum Inf Comput, 2005, 5: 80-91.
  • 6Zhu H J, Englert B G. Quantum state tomography with joint SIC POMs and product SIC POMs. ArXiv:quantph/l105.4561 v I.
  • 7Durt T, Emglert B G, Bengtsson t, et al. On mutually unbiased bases. lnt J Quantum Inf, 2010, 8: 535-640.
  • 8Godsil C, Roy A. Equianglar line, mutually unbiased bases and spin model. Euro J Combin, 2009, 30: 246-262.
  • 9McConnell G, Gross D. Efficient 2-designs from bases exist. ArXiv:quant-phj0717.1502vl.
  • 10Belovs A, Smotrovs J. A criterion for attaining the Welch bounds with applications for mutually unbiased bases. Lect Notes Comput Sci, 2008, 5393: 50-69.

同被引文献2

引证文献3

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部