期刊文献+

关于Diophantine方程x^n+2~ky^n=pz^2

On the Diophantine equation x^n+2~ky^n=pz^2
原文传递
导出
摘要 设p为奇素数且对任意的整数m,d,p≠(2m±1)/d2,则对任意的素数n>p8p2,方程xn+2kyn=pz2,k≥2没有整数解(x,y,z)使得x,y,z两两互素且均不为0. In this note,we show that if p is an odd prime and p= (2m ± 1)/d2 for any integers m and d,then the equation xn + 2kyn=pz2,k≥2 has no solutions in nonzero pairwise coprime integers x,y,z and prime n with np8p2.
作者 张中峰
出处 《中国科学:数学》 CSCD 北大核心 2012年第10期1047-1052,共6页 Scientia Sinica:Mathematica
基金 广东省自然科学基金(批准号:10152606101000000)资助项目
关键词 DIOPHANTINE方程 Frey曲线 Galois表示 模形式 Diophantine equation Frey curves Galois representations modular forms
  • 相关文献

参考文献15

  • 1Wiles A. Modular elliptic curves and Fermat's Last Theorem. Ann of Math, 1995, 141: 443-551.
  • 2Breuil C, Conrad B, Diamond F, et al. On the modularity of elliptic curves over Q: wild 3-adic exercises. J Amer Math Soc, 2001, 14: 843-939.
  • 3Bennett M, Skinner C. Ternary Diophantine equations via Galois representations and modular forms. Canad J Math, 2004, 56: 23-54.
  • 4Bennett M, Vatsal V, Yazdani S. Ternary Diophantine equations of signature (p,p,3). Compos Math, 2004, 140: 1399-1416.
  • 5Cohen H. Number Theory II: Analytic and Modern Methods. New York: Springer-Verlag, 2007.
  • 6Darmon H, Granville A. On the equations z'" = F(x, y) and AxP + Byq = Cz", Bull London Math Soc, 1995, 27: 513-543.
  • 7Darmon H, Merel L. Winding quotients and some variants of Fermat's Last Theorem. J Reine Angew Math, 1997, 490: 81-100.
  • 8Ellenberg J. Galois representations attached to Q-curves and the generalized Fermat equation A4 + B2 = CP? Arner J Math, 2004, 126: 763-787.
  • 9Kraus A. On the equation xP + yq = ZT: A survey. Ramanujan J, 1999,3: 315-333.
  • 10Bennett M, Mulholland J. On the diophantine equation xn + yn = 2o.pz2. C R Math Rep Acad Sci Canada, 2006, 28: 6-11.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部