期刊文献+

基于混沌理论的汉语语音信号的分析与预测

The analysis and prediction of Chinese speech signal based on chaos theory
下载PDF
导出
摘要 目前语音信号的分析与预测都是采用线性理论和线性预测技术,而语音信号的产生系统是一个复杂的非线性时变系统,而且具有混沌性,所以采用线性方法是不够的。深入研究了汉语语音信号的非线性特性,包括相空间重构理论及延迟时间、嵌入维数等相空间重构参数的确定方法,并求解出汉语语音音素的李雅普诺夫指数、延迟时间、嵌入维数和关联维数,所得结果表明汉语语音信号既非确定性的信号,又非随机信号,而是具有混沌特性的信号;根据汉语语音音素的延迟时间及嵌入维数的均值确定RBF神经网络(Radical Basis Function Network)模型中三层网络的神经元个数,结合RBF神经网络分析方法构造了一个非线性预测模型。仿真结果表明:基于RBF神经网络构造的非线性预测模型与线性预测模型相比,预测误差明显减小,预测性能上有所提高。 At present, the analysis and prediction of speech signal are all using linear theory and linear prediction technique, but the speech production system is complicated nonlinear and chaotic system, so linear methods are inadequate. Chaos theory is used in studying the nonlinear characteristic of Chinese speech, including theory of phase space reconstruction and methods of solving phase space reconstruction parameters containing delay time, embed dimension and so on, and solved the Lyapunov component, delay timemhed dimension and correlation dimension of Chinese speech phonemes, which indicate Chinese speech is not deterministic signal and stochastic signal, but has chaotic characteristics; the averages of the delay time and embedding dimension for Chinese speech phonemes determine the neurons number of three-layer network for Radical Basis Function (RBF) neural network model, RBF network analysis methods are applied to construct nonlinear predictor. Tile simulation results indicate: compared with the linear predictor, prediction error of nonlinear predictor based on RBF network is significantly decreased and has higher performance.
出处 《电路与系统学报》 CSCD 北大核心 2012年第5期6-12,共7页 Journal of Circuits and Systems
基金 国家自然科学基金重点资助课题项目(60634020)
关键词 汉语语音信号 非线性 混沌 RBF神经网络 预测模型 Chinese speech signal nonlinear chaos radical basis function network prediction model
  • 相关文献

参考文献10

  • 1胡水清 张宇 华一满 等.汉语语音的非线性动力学特性分析.声学学报,2000,25(4):329-334.
  • 2M Bandbrook, S Mclaughlin, I MannSpeech characterization and synthesis by nOnlinear methods [J]. IEEE Trans On Speech Audio Process, 1999, 7(1): 1-17.
  • 3A Petry, DA C Barone. Speaker identification using nonlinear dynamical feature [J]. Chaos, Solitons & Fractais, 2002, 13(2): 221-231.
  • 4Thyssen J, Nielsen H, Hansen S D. Non-linear short-term prediction in speech coding [A]. IEEE, Proc of ICASSP [C]. 1994, (5): I- 185-I- 188.
  • 5Tsungnan Lin, Bill G.Horne, Peter Tino,C. Lee Giles. Learning long-term dependencies in NARX recurrent neural networks [J]. IEEE Transactions on neural networks, 1996, 7(6): 329-338,.
  • 6林嘉宇,刘荧.用于语音信号非线性建模的RBF神经网络的训练方法及其性能[J].信号处理,2001,17(4):322-328. 被引量:4
  • 7李志宏,韩如成,王安红.基于动态小波神经网络的语音信号非线性预测器[J].太原科技大学学报,2005,26(2):115-119. 被引量:1
  • 8Kim H S, Eykholt R, Salas J D, et al. Nonlinear dynamics, delay times, and embedding windows [J]. Physiea D:Nonlinear Phenomena, 1999, 127(1-2): 48-60.
  • 9覃爱娜,黄仲,桂卫华.基于混沌系统模型的非线性语音预测器[J].计算机工程与应用,2008,44(18):141-143. 被引量:3
  • 10Kokkinos I, Maragos ENonlinear speech analysis using modcls for chaotic systems [J]. IEEE Transaction On Speech and Audio Processing, 2005, 13(6): 1098-1109.

二级参考文献13

  • 1韦岗,陆以勤,欧阳景正.混沌、分形理论与语音信号处理[J].电子学报,1996,24(1):34-39. 被引量:33
  • 2Kokkinos l,Maragos P.Nonlinear speech analysis using models for chaotic systems[J].IEEE Transaction on Speech and Audio Processing,2005,13(6): 1098-1109.
  • 3Sauer T,Yorke J A,Casdagli M.Embedology[J].Journal of Statistical Physics, 1991,65:579-616.
  • 4Cao L Y.Practical method for determining the minimum embedding dimension of a scalar time series[J].Physica D, 1997,110(5):43-50.
  • 5Kubin G,Lainsesek C,Rank E.Identification of nonlinear oscillator models for speech analysis and synthesis[J].Nonlinear Speech Modeling and Applications Lecture Notes in Artificial Intelligence, 2005,3445 : 74-113.
  • 6Faundez M,Monte E,Vallverdu F A.A comparative study between linear and nonlinear speech prediction[M]//Biological and Artificial Computation:From Neuroscience to Technology.Heidelberg:Springer Berlin, 1997: 1154-1163.
  • 7Jun zhang, Gilbert G. Wavelet Neural Networks for Function Learning[J]. IEEE Trans. On Signal Processing,1995,2(6):1485-1496.
  • 8Yonghong Tan, Xuanju Dang, Feng Liang, Chunli Su. Dynamic Wavelet Neural Network for Nonlinear Dynamic System Identification, Proceedings of the 2000 IEEE International Conference on Control Applications Anchorage[C]. Alaska,USA.Septermber 25-27,2000,214-219.
  • 9Anhong Wang, Xueying Zhang,Zhiyi Sun, A nonlinear prediction speech coding ADPCM algorithm based on RNN[C]. Proceedings of 2002 International Conference on Machine Learning and Cybernetics,Beijing,China,2002,1353-1357.
  • 10飞思科技产品研发中心.神经网络理论与MATLAB7实现[M].北京:电子工业出版社,2006.119-121.

共引文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部