期刊文献+

一种利用距离脉冲二维局部特性的距离扩展目标的检测方法

A range spread target detection method based on the local property in the range-pulse dimensions
下载PDF
导出
摘要 针对传统的二进制积累检测器阈值设置的不足,提出基于距离维和脉冲维二维局部模糊阈值函数来获取精炼脉冲距离二维图像从而进行积累检测的新算法。该算法将单脉冲距离维的距离扩展目标检测问题推广为多脉冲距离脉冲二维图像的目标检测问题,并积累精炼图像的能量作为检测统计量从而实现目标检测。新方法不需要关于目标的强散射点密度信息,并且易于实现恒虚警检测。实验结果表明本文方法超越了传统的能量积累检测方法、基于散射点分布密度的广义似然比检测方法以及顺序统计检测方法。 Aimed at the shortage for the threshold set of the conventional binary integration detection method, the novel detection method refines the obtained range-pulse image and integrates the energy of the refined range-pulse image for detection based on the proposed range-dimensional and pulse-dimensional local fuzzy threshold function. In this paper, the conventiohal single pulse detection method along range dimensional is generalized to detect range-spread target in the range-pulse image. Then, the energy of the refined image is used as the detection statistic for the range-spread target detection The novel detection method doesn't need the priori knowledge for the spatial scattering density parameter, and has the constant false alarm rate (CFAR) character. The experiment results based on the measdred radar target data show that the proposed detection method has the better detection performance than the energy integration detector, the commonly-used spatial scattering density generalized likelihood ratio test (SSD-GLRT) detector and the order statistic detector.
出处 《电路与系统学报》 CSCD 北大核心 2012年第5期36-41,共6页 Journal of Circuits and Systems
基金 国家自然科学基金重大项目(10990012) 中央高校基本科研业务费(K5051202037) 广西无线宽带通信与信号处理重点实验室开放基金(12205)
关键词 二进制积累 二维局部模糊阈值 能量积累 散射点分布密度 广义似然比 binary integration two-dimensional local fuzzy threshold energy integration scattering density generalizedlikelihood ratio
  • 相关文献

参考文献12

  • 1Wehner D R. High-Resolution Radar [M]. 2nd ed., Boston, MA: Artech House, 1995.
  • 2柴晶,刘宏伟,保铮.一种提高雷达HRRP识别和拒判性能的新方法[J].西安电子科技大学学报,2009,36(2):233-239. 被引量:5
  • 3Du Lan, Liu Hongwei, Bao Zheng. Radar HRRP statistical recognition: parametric model and model selection [J]. IEEE Trans. Signal Processing, 2008, 56f5): 1931-1944.
  • 4Maio A De, Farina A, Gerlach K. Adaptive detection of range spread targets with orthogonal rejection [J]. IEEE Trans. on Aerosp. Electron. Syst., 2007, 43(2): 738-752.
  • 5Conte E, Main A De. Distributed target detection in compound-Gaussian noise with Rao and Wald tests [J]. IEEE Trans. on Aerosp. Electron.Syst., 2003, 39(2): 568-582.
  • 6李涛,冯大政,夏宇垠.基于广义似然比的宽带分布式目标检测算法[J].系统工程与电子技术,2009,31(12):2835-2840. 被引量:2
  • 7Shuai Xiaofei, Kong Lingjiang, Yang Jianyu. Performance analysis of GLRT-based adaptive detector for distributed targets in compound-Gaussian clutter [J]. Signal Processing, 2010, 90; 16-23.
  • 8Guan Jian, Zhang Yanfei, Huang Yong. Adaptive subspace detection of range-distributed target in compound-Gaussian clutter [J]. Digital signal processing, 2009, 19: 66-73.
  • 9Xu Shuwen, Shui Penglang, Yan Xueying. A novel double-pulse detection method for aircraft target in ISAR [A]. 2nd Asian-Pacific Conference on Synthetic Aperture Radar [C]. 2009.721-724.
  • 10Gerlach K, Steiner M. Detection of a spatially distributed target in white noise [J]. IEEE Signal Processing Letters, 1997, 4(7): 198-200.

二级参考文献21

  • 1黄巍,贺知明,向敬成.宽带雷达能量积累与信号检测方法研究[J].系统工程与电子技术,2004,26(7):889-892. 被引量:17
  • 2Du Lan, Liu Hongwei, Bao Zheng, et al. Radar HRRP Target Recognition Based on Higher Order Spectra[J]. IEEE Trans on Signal Processing, 2005, 53(7): 2359-2368.
  • 3Cristianini N, Shawe T J. An Introduction to Support Vector Machines and Other Kernel-based Learning Methods [M]. Cambridge: Cambridge University Press, 2000.
  • 4Tax D, Duin R. Support Vector Domain Description [J]. Pattern Recognition Letters, 1999(20) : 1191-1199.
  • 5Tax D, Duin R. Support Vector Data Description [J]. Machine Learning, 2004, 54(1): 45-66.
  • 6Lanckriet G, Cristianini N, Bartlett P, et al. Learning the Kernel Matrix with Semidefinite Programming [J]. Journal of Machine Learning Research, 2004(5): 27-72.
  • 7Tax D. One-class Classification [D]. Netherland: Delft University of Technology, 2001.
  • 8Parzen E. On Estimation of a Probability Density Function and Mode [J]. Annals of Mathenatical Statistics, 1962(33) : 1065-1076.
  • 9Bishop C. Neural Networks for Pattern Recognition [M]. Walton Street: Oxford University Press, 1995.
  • 10Duda R D, Hart P E, Stork D G. Pattern Classification [M]. San Francisco: John Wiley and Sons, 2001.

共引文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部