期刊文献+

一种联合TOA与DPS估计的MIMO OFDM系统信道估计算法

An algorithm of channel estimation based on the joint estimation of TOA and DPS for MIMO OFDM systems
下载PDF
导出
摘要 本文提出了一种基于联合TOA(到达时间)与DPS(时延功率谱)估计的MIMO OFDM系统信道估计算法,该算法借助导频设计,通过联合TOA与DPS估计对各路径时延位置进行精确定位,并在此基础上,对初始时域信道估计进行非线性滤波,从而改善了大时延扩展信道条件下由于导频子载波受限所导致的估计性能恶化现象。此外,文中还进一步分析、推导了该算法所适用的信道多径时延条件。最后,仿真结果也表明该算法可有效对抗大时延扩展信道,而且其MSE、BER性能要优于传统的时域最小二乘信道估计算法。 In this paper, an algorithm of channel estimation based on the joint estimation of TOA and DPS is proposed, which adopt the joint estimation of TOA and DPS for accurately positioning the multi-path delay by the pilot design. On the base of it, the initial channel estimation in time-domain can be nonlinearly filtered to improve the decreased performance of estimation for that the pilot subcarrier is limited under the channel condition of the large delay spread. Furthermore, the conditions of the multi-path delay adapting to the algorithm is also deeply analyzed and concluded. Finally, simulations also show that the algorithm can effectively resist the MIMO channel of large delay spread, and outperform the traditional TD-LS-CE in the performances of the MSE and BER.
出处 《电路与系统学报》 CSCD 北大核心 2012年第5期48-54,共7页 Journal of Circuits and Systems
基金 十一五863计划重点项目"高频段无线通信基础技术研究开发与示范系统"子课题"高频段无线链路技术研究"(20090AA011504) 国家重大专项"新一代宽带无线移动通信网"子课题"IMT-Advanced关键技术仿真平台开发"(2009ZX03003-008)
关键词 MIMO OFDM系统 TOA DPS ESPRIT 时域最小二乘信道估计(TD-LS-CE) MIMO OFDM system time of Arrival (TOA) Estimating Signal Parameter via Rotation Invariance Techniques(ESPRIT) Delay Power Spectrum (DPS) Least Square Channel Estimation of Time Domain (TD-LS-CE)
  • 相关文献

参考文献13

  • 1Yang Zhang diandong Li Lihua Pang.Hybrid pilots assisted channel estimation algorithm for MIMO-OFDM systems[J].Journal of Systems Engineering and Electronics,2010,21(5):721-728. 被引量:4
  • 2Kala Praveen Bagadi Profi Susmita Das. MIMO-OFDM Channel Estimation using Pilot Carries [A]. International Journal of Computer Applications (0975-8887) [C]. 2010-05, 2(3).
  • 3M R Raghavendra, Eldar Lior, Srikrishna Bhashyam, K Giridhar. Parametric Channel Estimation for Pseudo-Random Tile-Allocation in Uplink OFDMA [J]. IEEE Trans on Signal Processing, 2007, 55(11).
  • 4L UXin,XU Jun.Channel estimation for MIMO-OFDM systems using steepest-descent algorithm[J].通讯和计算机(中英文版),2009,6(11):64-68. 被引量:1
  • 5Feng Wan, W P Zhu. Senior Member, IEEE, and M N S Swamy, Fellow, IEEE.A Semiblind Channel Estimation Approach for MIMO-OFDM Systems [J]. IEEE Transactians on Signal Processing, 2008, 56(7).
  • 6Imad Barhumi, Member, IEEE, Marc Moonen, Member, IEEE. Optimal Training Design for MIMO OFDM Systems in Mobile Wireless Channels [J]. IEEE Trans on Signal Processing, 2003, 51(6): 1615.
  • 7Hlaing Minn A1-Dhahir, N Optimal Training signals for MIMO OFDM Channel Estimation [J]. IEEE Trans. Commun., 2006, 5(5): 1158-1168.
  • 8Z Jane,Wang, Zhu Han, K J Ray Liu, Fellow, IEEE. A MIMO-OFDM Channel Estimation Approaeh Using Time of Arrivals [J]. IEEE Trans.Commun., 2005, 4(3).
  • 9Ji-Woong CHOI, Yong-Hwan LEE, Members. Complexity-Reduced Channel Estimation in Spatially Correlated MIMO-OFDM Systems [J]. IEICE Trans. Cammun., 2007, E90-B,(9).
  • 10Feifei Gao, Student Member, IEEE, Yonghong Zeng, Senior Member, IEEE. Robust Subspace Blind Channel Estimation for Cyclic Prefixed MIMO OFDM Systems: Algorithm, Identifiability and Performance Analysis [J]. IEEE Journal on Selected Areas in Communications, 2008, 26(2).

二级参考文献16

  • 1Y. Li, N. Seshadri, S. Ariyavisitakul. Channel estimation for OFDM systems with transmitter diversity in mobile wireless channels. IEEE Journal on Selected Areas in Communications, 1999. 17 (3): 461-471.
  • 2Y. Li. Simplified channel estimation for OFDM systems with multiple transmit antennas. 1EEE Trans. on Wireless Communications, 2002, 1 (1): 67-75.
  • 3Y. T. Qiao, S. Y. Yu, P. C. Su, et al. Research on an iterative algorithm of LS channel estimation in MIMO OFDM systems. IEEE Trans. on Broadcasting, 2005, 51 (1): 149-153.
  • 4Z. J. Wang, Z. Han, K. J. R. Liu. A MIMO-OFDM channel estimation approach using time of arrivals. IEEE Trans. on Wireless Communications, 2005, 4 (3): 1207-1213.
  • 5H. Li, J. W. M. Bergmans, E M. J. Willems. Low-complexity LMMSE-based MIMO-OFDM channel estimation via angledomain processing. IEEE Trans. on Signal Processing, 2007, 55 (12): 5668-5680.
  • 6J. Gao, H. E Liu. Low-complexity map channel estimation for Mobile MIMO-OFDM systems. IEEE Trans. on Wireless Communications, 2008, 7 (3): 774-780.
  • 7W. W. Yang, Y. M. Cai. Pilot embedded semi-blind channel estimation for MIMO-OFDM. Proc. of Signal Processing and Its Applications, Sharjah: IEEE Press, 2007: 1-4.
  • 8B. Kim, S. Y. Jung, J. Kim, et al. Hidden pilot based preceder design for MIMO-OFDM systems. Communications Letters, 2008, 12 (9): 657--659.
  • 9N. N. Tran, H. D. Tuan, H. H. Nguyen. Orthogonal affine precoder design for jointly optimal channel estimation and symbol detection in MIMO-OFDM systems. Proc. of Communications and Information Technologies, Sydney: IEEE Press, 2007: 983- 988.
  • 10I. Barhumi, G. Leus, M. Moonen. Optimal training design for MIMO OFDM systems in mobile wireless channels. 1EEE Trans. on Signal Processing, 2003, 51 (6): 1615-1624.

共引文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部