期刊文献+

Initial Decomposition of Methanol and Water on In2O3(110): A Periodic DFT Study

Initial Decomposition of Methanol and Water on In2O3(110): A Periodic DFT Study
原文传递
导出
摘要 Pure In2O3 is considered as an efficient methanol steam reforming catalyst. Despite of several studies in the past decades, the mechanism of MSR on In2O3 is still not fully understood. In this work, a periodic density functional theory study of the initial dissociation of methanol and water over the In2O3 (110) surface is presented. The activation energy barriers and thermochemistry for several elementary steps are reported. It is found that the energy barri- ers for O--H bond cleavage of both CH3OH and H20 to produce CH30 and OH species at a surface ln-O pair site are very low, indicating that In2O3 (110) can facilely catalyze these two important processes at low temperatures. In addition, the subsequent dehydrogenation of CH30 to CH20 is also found to proceed with a low barrier. Pure In2O3 is considered as an efficient methanol steam reforming catalyst. Despite of several studies in the past decades, the mechanism of MSR on In2O3 is still not fully understood. In this work, a periodic density functional theory study of the initial dissociation of methanol and water over the In2O3 (110) surface is presented. The activation energy barriers and thermochemistry for several elementary steps are reported. It is found that the energy barri- ers for O--H bond cleavage of both CH3OH and H20 to produce CH30 and OH species at a surface ln-O pair site are very low, indicating that In2O3 (110) can facilely catalyze these two important processes at low temperatures. In addition, the subsequent dehydrogenation of CH30 to CH20 is also found to proceed with a low barrier.
作者 林森 谢代前
出处 《Chinese Journal of Chemistry》 SCIE CAS CSCD 2012年第9期2036-2040,共5页 中国化学(英文版)
关键词 DFT METHANOL WATER DECOMPOSITION In2O3 (110) DFT, methanol, water, decomposition, In2O3 (110)
  • 相关文献

参考文献36

  • 1Trimm, D. L.; Onsan, Z. 1. Catal. Today 2001, 43, 31.
  • 2Palo, D. R.; Dagle, R. A.; Holladay, J. D. Chem. Rev. 2007, 107,3992.
  • 3Sa, S.; Silva, H.; Brandao, L.; Sousa, J. M.; Mendes, A. Appl. Catal. B 2010, 99, 43.
  • 4Olah, G. Catal. Left. 2004, 93, 1.
  • 5Jiang, C. J.; Trimm, D. L.; Wainwright, M. S.; Cant, N. W. Appl. Catal. A 1993, 93, 254.
  • 6Peppley, B. A.; Amphlett, J. C.; Kearns, L. M.; Mann, R. F. Appl. Catal. A 1999, 179, 31.
  • 7Lee, J. K.; Ko, J. B.; Kim, D. H. Appl. Catal. A 2004, 278, 25.
  • 8lwasa, N.; Mayanagi, T.; Ogawa, N.; Sakata, K.; Takezawa, N. Catal. Lett. 1998, 54, 119.
  • 9Lorenz, H.; Turner, S.; Lebedev, O. 1.; Van Tendeloo, G.; Klotzer, B.; Rameshan, C.; Pfaller, K.; Penner, S. Appl. Catal. A 2010, 374, 180.
  • 10Umegaki, T.; Kuratani, K.; Yamada, Y.; Ueda, A.; Kuriyama, N.; Kobayashi, T.; Xu, Q. J. Power Sources 2008, 179, 566.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部