期刊文献+

Evaluation of regeneration potential of Pinus koraiensis in mixed pine-hardwood forests in the Xiao Xing'an Mountains,China 被引量:3

Evaluation of regeneration potential of Pinus koraiensis in mixed pine-hardwood forests in the Xiao Xing'an Mountains,China
下载PDF
导出
摘要 Large scale harvest of Korean pine (Pinus koraiensis) seeds as a food product in the mixed Korean pine-hardwood forest of northeastern China poses a serious threat to the sustainability and restoration of this endangered regional ecosystem. Seed collection over past decades greatly reduced the seed bank and subsequent seedling and sapling re- cruitment, and impacting a wide array of granivorous animals that rely on the pine seeds. We surveyed Korean pine seeds, including solid seeds (SS), insect consumed seeds (ICS) and other (animal) consumed (OCS) kernels, of the seed bank (forest floor and the top 10 cm of mineral soil), the seedlings and saplings from 1 m: sample plots in five forest types in Liangshui Nature Reserve (LNR) of the southern Xiao Xing'an Moun- tains in northeastern China to provide accurate information for assessing the Korean pine regeneration potential. The average number of pine seeds in the seed bank were 11.2 seeds/m2, 9.1 seeds/m2, 4.6 seeds/m2, 1.1 seeds/m2, and 0.2 seeds/m2 in Korean pine-basswood forest, mixed Korean pine-hardwood forest, mixed conifer-hardwood forest, white birch forests, and oak forests, respectively. In the first three forest types, percentages of SS (potentially viable seeds) were 11.2%, 3.5% and 27.8%, respectively. The percentages of ICS (not viable seeds) were consistent at around 35%. The higher but variable percentages of OCS (not viable seeds) indicated high seed predation in these forests. Com- pared with other studies, we recorded higher percentages of seed damage, probably due to our survey approach and the increased depth of seed bank sampled in our study. Depletion of pine seeds in the seed bank greatly reduced seedling and sapling recruitment. Densities of pine seed- lings varied from about 180 trees/ha in the mixed Korean pine-hardwood forest to about 5,400 trees/ha in the mixed conifer-hardwood forests and showed a high degree of spatial variation. Saplings were rare in the mixed Korean pine-hardwood forest, but ranged in the thousands in other forests. Large scale pine seed harvest has seriously threatened the sustainability of the mixed Korean pine-hardwood forest ecosystem. Scaling down the seed harvest or supplemental planting of pine saplings are urgently needed to maintain the health of the existing Korean pine forests and to restore this endangered ecosystem. Large scale harvest of Korean pine (Pinus koraiensis) seeds as a food product in the mixed Korean pine-hardwood forest of northeastern China poses a serious threat to the sustainability and restoration of this endangered regional ecosystem. Seed collection over past decades greatly reduced the seed bank and subsequent seedling and sapling re- cruitment, and impacting a wide array of granivorous animals that rely on the pine seeds. We surveyed Korean pine seeds, including solid seeds (SS), insect consumed seeds (ICS) and other (animal) consumed (OCS) kernels, of the seed bank (forest floor and the top 10 cm of mineral soil), the seedlings and saplings from 1 m: sample plots in five forest types in Liangshui Nature Reserve (LNR) of the southern Xiao Xing'an Moun- tains in northeastern China to provide accurate information for assessing the Korean pine regeneration potential. The average number of pine seeds in the seed bank were 11.2 seeds/m2, 9.1 seeds/m2, 4.6 seeds/m2, 1.1 seeds/m2, and 0.2 seeds/m2 in Korean pine-basswood forest, mixed Korean pine-hardwood forest, mixed conifer-hardwood forest, white birch forests, and oak forests, respectively. In the first three forest types, percentages of SS (potentially viable seeds) were 11.2%, 3.5% and 27.8%, respectively. The percentages of ICS (not viable seeds) were consistent at around 35%. The higher but variable percentages of OCS (not viable seeds) indicated high seed predation in these forests. Com- pared with other studies, we recorded higher percentages of seed damage, probably due to our survey approach and the increased depth of seed bank sampled in our study. Depletion of pine seeds in the seed bank greatly reduced seedling and sapling recruitment. Densities of pine seed- lings varied from about 180 trees/ha in the mixed Korean pine-hardwood forest to about 5,400 trees/ha in the mixed conifer-hardwood forests and showed a high degree of spatial variation. Saplings were rare in the mixed Korean pine-hardwood forest, but ranged in the thousands in other forests. Large scale pine seed harvest has seriously threatened the sustainability of the mixed Korean pine-hardwood forest ecosystem. Scaling down the seed harvest or supplemental planting of pine saplings are urgently needed to maintain the health of the existing Korean pine forests and to restore this endangered ecosystem.
出处 《Journal of Forestry Research》 CAS CSCD 2012年第4期543-551,共9页 林业研究(英文版)
基金 supported by the National Science Foundation of China (NSFC) grant (grants 30830024,30770330)
关键词 Pinus koraiensis seed bank pine regeneration seed predation Pinus koraiensis seed bank pine regeneration seed predation
  • 相关文献

参考文献11

二级参考文献122

共引文献223

同被引文献27

引证文献3

二级引证文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部