期刊文献+

毕赤酵母产重组木聚糖酶发酵条件的优化及其酶学性质 被引量:2

Optimization of condition for fermentation of recombi nant Pichia pastoris and enzymatic properties of xylanase produced
原文传递
导出
摘要 目的优化毕赤酵母工程菌GS115/xyn11A产重组木聚糖酶的发酵条件,并检测其酶学性质。方法采用单因素试验和L(934)正交试验考察摇瓶发酵条件下培养基起始pH值、诱导剂甲醇添加量、诱导温度及诱导时间对产酶活性的影响;并分析重组木聚糖酶的酶学性质。结果影响重组毕赤酵母产酶的因素重要性依次为:培养基起始pH值>诱导时间>诱导温度>甲醇添加量,重组酵母产酶最佳条件为:起始pH值7.5,甲醇添加量1.5%,32℃诱导96 h,在此条件下进行诱导表达重组木聚糖酶的酶活性可达228.35 IU/ml;酶的最适反应温度为50℃,最适反应pH值为5.5,在低于40℃和pH 4.5~7.5的范围内较稳定。结论优化了毕赤酵母产重组木聚糖酶的发酵条件,为木聚糖酶的工业化生产及应用提供了依据。 Objective To optimize the condition for fermentation of recombinant Pichia pastoris GSl15 /xynllA and deter- mine the enzymatic properties of produced xylanase. Methods The effects of the initial pH value, methanol concentration as well as temperature and time for induction on expression of xylanase in recombinant P. pastoris GSll5/xynllA were investigated by single factor test and L9 (34) orthogonal test, and the enzymaticproperties of recombinant xylanase were analyzed. Results In the order of importance to expression of xylanase in recombinant P. pastoris, the influencing factors were initial pH value of medium, time for in- duction, temperature for induction and methanol concentration. The optimal initial pH value, methanol concentration as well as tem- perature and time for induction were 7. 5, 1. 5%, 32 ~C and 96 h respectively. Under the optimal condition, the recombinant xy- lanase reached an activity of 228.35 IU/ml, of which the optimal working temperature and pH value were 50 ~C and 5. 5 respective- ly, and showed high stability at 40 ℃ or below and pH 4. 5 - 7. 5. Conclusion The condition for fermentation of recombinant P. p astoris GS 115/xynl 1A was optimized, which provided a basis for industrial production and application of xylanase.
出处 《中国生物制品学杂志》 CAS CSCD 2012年第10期1362-1365,共4页 Chinese Journal of Biologicals
关键词 木聚糖酶 毕赤酵母 发酵 优化 酶活力 Xylanase Pichia pastoris Fermentation Optimization Enzymatic activity
  • 相关文献

参考文献12

  • 1杨浩萌,姚斌,范云六.木聚糖酶分子结构与重要酶学性质关系的研究进展[J].生物工程学报,2005,21(1):6-11. 被引量:28
  • 2Sriyapai T, Somyoonsap P, Matsui K, et al. Cloning of a ther-mostable xylanase from Actinomadura sp. S14 and its expression in Escherichia coli and Pichia postoris [J]. J Biosci Bioeng, 2011, 111(5): 528-536.
  • 3Dam6sio ARdL, Silva TM, Almeida FBdR, et al. Heterologous expression of an Aspergillus niveus xylanase GH11 in Aspergillus nidulans and its characterization and application [J]. "Process Biochem, 2011, 46(6): 1236-1242.
  • 4Choudhury B, Chauhan S, Singh SN, et ol. Production of xy- lanase of Bacillus coogulans and its bleaching potential [J]. World J Microbiol Biotechnol, 2006, 22(3): 283-288.
  • 5包怡红,李雪龙.木聚糖酶在食品中的应用及其发展趋势[J].食品与机械,2006,22(4):130-133. 被引量:15
  • 6Schryver PD, Sesena S, Decaigny B, et al. Xylanases from mi- crobial origin induce syrup formation in dough [J]. J Cereal Sci, 2008, 47(1): 18-28.
  • 7Camacho NA, Aguilar OG. Production, purification and charac- terization of a low-molecular-mass xylanase from Aspergillus sp. and its application in baking [J]. Appl Biochem Biotechnol, 2003, 104(3): 159-172.
  • 8Caballero PA, G6mez M, Rosell CM. Improvement of dough rhe- ology, bread quality and bread shelf-life by enzymes combination [J]. J Food Engi, 2007, 81 (1): 42-53.
  • 9Kapoor M, Kuhad RC. Immobilization of xylanase from Bacillus pumilus strain MK001 and its application in production of xylo- oligosaccharides [J]. Appl Biochem Biotechnol, 2007, 142(2): 125-138.
  • 10Wang J, Zhang H, Wu M, et ol. Cloning and sequence analysis of a novel xylanase gene, Auxynl0A, from Aspergillus usamii [J]. Biotechnol Lett, 2011, 33(5): 1029-1035.

二级参考文献32

共引文献41

同被引文献38

  • 1王时良,朱劼,邬敏辰.木聚糖酶的分离纯化及性质研究[J].西北农林科技大学学报(自然科学版),2006,34(2):71-76. 被引量:5
  • 2孙振涛,赵祥颖,刘建军,杜金华.微生物木聚糖酶及其应用[J].生物技术,2007,17(2):93-97. 被引量:28
  • 3Collins T,Gerday C, Feller G. Xylanases, xylanasefamilies and extremephilic xylanases. FEMS MicrobiologyReviews,2005, 29 (1) : 3-23.
  • 4Pastor FI], Gallardo 6,Sanz-Aparicio J, Dfaz P.Xylanases : molecular properties and applications.Polaina J, MacCabe AP. Industrial Enzymes.Heidelberg: Springer-Verlag Press, 2007,65-82.
  • 5Verma D, Satyanarayana T, Molecular approaches forameliorating microbial xylanases. BioresourceTechnology, 2012, 117: 360-367.
  • 6Polizeli MLTM,Rizzatti ACS, Monti R t Terenzi HF,Jorge JA, Amorim DS. Xylanases from fungi : propertiesand industrial applications. Applied Microbiology andBiotechnology, 2005,67 (5) : 577- 591.
  • 7Turunen 0,Etuaho K,Fenel F, Vehmaanpera J, WuX,Rouvinen J, Leisola M. A combination of weaklystabilizing mutations with a disulfide bridge in the a-helixregion of Trichoderma reesei endo-1,4-p-xylanase IIincreases the thermal stability through synergism. Journalof Biotechnology,2001,88 (1) : 37-46.
  • 8Jeong MY,Kim S,Yun CW, Choi YJ, Cho SG.Engineering a de novo internal disulfide bridge to improvethe thermal stability of xylanase from Bacillusstearothermophilus No. 236. Journal of Biotechnology,2007,127 (2) : 300-309.
  • 9Paes G, O’Donohue MJ. Engineering increasedthermostability in the thermostable GH-11 xylanase fromThermobacillus xylanilyticus. Journal of Biotechnology,2006’ 125 (3) : 338-350.
  • 10Dumon C, Varvak A, Wall MA, Flint JE, Lewis RJ,Lakey JH, Morland C,Luginbiihl P, Healey S, TodaroT, DeSantis G,Sun M, Parra-Gessert L, Tan X,Weiner DP, Gilbert HJ. Engineeringhyperthermostability into a GH11 xylanase is mediated bysubtle changes to protein structure. Journal of BiologicalChemistry,2008,283 (33) : 22557-22564.

引证文献2

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部