期刊文献+

Ti-26Nb-28Ta-5.5Zr合金室温压缩变形过程中微观组织变化规律 被引量:4

Microstructures Variation of Ti-26Nb-28Ta-5.5Zr Alloy during Compression at Room Temperature
原文传递
导出
摘要 借助d电子理论计算,设计并制备了具有较高Kβ稳定参数的生物相容性β型Ti-26Nb-28Ta-5.5Zr(%(质量分数),Kβ~1.61)合金。综合利用万能电子试验机测试、显微硬度测试、X射线衍射分析和透射电子显微学观察等方法,研究了该合金固溶态时的压缩性能、变形机制以及不同变形量对应的显微结构特征。结果表明:固溶态β型Ti-26Nb-28Ta-5.5Zr合金具有较好的塑性,其屈服强度约为450 MPa。当变形量为7%时,其形变机制为位错滑移;当形变量为50%时,严重影响变形结构特征的塑性变形机制主要为应力诱发α″马氏体相变;而当形变量为75%时,除了α″马氏体相变、还观察到明显的非均匀局域化变形。 With the aid of d-electron alloy theory calculation,a β-type biocompatible Ti-26Nb-28Ta-5.5Zr(%(mass fraction),Kβ~1.61) alloy with higher Kβ stability parameter was designed and prepared.Electronic universal testing machine compressing,microhardness testing,X-ray diffraction examination and transmission electron microscopy observations were applied to investigate the mechanical properties under compression,deformation mechanisms and deformation microstructural characteristics for the solution-treated Ti-26Nb-28Ta-5.5Zr alloy.The results showed that,the β-type Ti-26Nb-28Ta-5.5Zr alloy in solution-treated state had good plasticity and its compressive yield strength was 450 MPa.Dislocation glide was the dominant mechanism when the amount of compression deformation was 7%.Stress-induced α″ martensite transformation was the main plastic deformation mechanism which could have a strong influence on the characteristic of deformed microstructure when the amount of compression was 50%.In addition to the stress-induced α″ martensite transformation,non-uniform localized deformation was also found to occur when deformation amount was 75%.
出处 《稀有金属》 EI CAS CSCD 北大核心 2012年第5期694-699,共6页 Chinese Journal of Rare Metals
基金 国家自然科学基金项目(51171004) 北京市教育委员会科技计划面上项目(KM200810005029)资助
关键词 生物医用材料 Ti-Nb-Ta-Zr合金 塑性形变机制 应力诱发相变 变形结构 biomedical material Ti-Nb-Ta-Zr alloy plastic deformation mechanism stress-induced phase transformation deformationstructure
  • 相关文献

参考文献17

  • 1Mitsuo Niinomi. Recent metallic materials for biomedical appli-cations [J ]. Metallurgical and Materials Transactions A,2002,33(3); 477.
  • 2杨永建,马秀梅,孙威.生物医用β型Ti-25.6Nb-19.4Ta合金设计与微观结构的研究[J].稀有金属,2010,34(2):166-171. 被引量:7
  • 3Grosdidier T, Philippe M J. Deformation induced martensiteand superelasticity in a ^-metastable titanium alloy [J]. Materi-als Science and Engineering A, 2000,291(1-2): 218.
  • 4Xu W, Kim K B,Das J, Calin M, Eckert J. Phase stabilityand its effect on the deformation behavior of Ti-Nb-Ta-In/Cr al-loys [J]. Scripta Materialia, 2006, 54(11) : 1943.
  • 5Yang Y, Li G P, Cheng G M, Li Y L, Yang K. Multiple de-formation mechanisms of Ti-22. 4Nb-0. 73Ta-2. 0Zr-l. 340 alloy[J]. Applied Physics Letters, 2009 , 94(6) : 061901.
  • 6Wyatt Z, Ankem S. The effect of metastability on room temper-ature deformation behavior of p and a + ^ titanium alloys [ J].Journal of Materials Science, 2010, 45( 18) : 5022.
  • 7Yang Y,Wu S Q, Li G P, Li Y L,Lu Y F, Yang K, Ge P.Evolution of deformation mechanisms of Ti-22. 4Nb-0. 73Ta-2Zr-1.340 alloy during straining [ J ]. Acta Materialia, 2010, 58(7) : 2778.
  • 8Saito T, Furuta T, Hwang J, Kuramoto S, Nishino K, Suzuki N,Chen R, Yamada A, Ito K, Seno Y,Nonaka T,Ikehata H, Na-gasako N, Iwamoto C, Ikuhara Y, Sakuma T. Multi -functionalalloys obtained via a dislocation-free plastic deformation mecha-nism [J]. Science, 2003, 300(5618) : 464.
  • 9Morinaga M, Kato M, Kamimura T, Fukumoto M, Harada I,Ku-bo K. Theoretical design of p-type titanium alloys [A]. Titani-um 1992, Science and Technology, Proc. 7th Int. Conf. on Tita-nium [C]. San Diego, CA, USA, 1992. 276.
  • 10Furuta T, Kuramoto S,Hwang J H, Nishino K,Saito T. Elas-tic deformation of multi-functional Ti-Nb-Ta-Zr-0 alloys [ J ].Mater. Trans.,2005, 46(12) : 3001.

二级参考文献7

共引文献6

同被引文献44

引证文献4

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部