期刊文献+

小波变换在心电信号处理中的应用 被引量:3

Application of Wavelet Transform in ECG Signal Processing
下载PDF
导出
摘要 在心脏病诊断过程中,心电信号的检测是重要的环节,然而心电信号的噪声很强,为了能够较好地滤除信号中的噪声,对信号的特点进行准确标定,利用基于小波变换的阈值去噪算法和基于小波的模极大值-极小值的算法进行心电信号的处理。采用MIT/BIH中的数据进行仿真调试验证,实验结果表明,被引入的几种噪声能被很好地去除,而且心电信号能较完整地保留下来,特征点能被准确地检测到,从而提高了诊断心脏等疾病的诊断效率。 In the process of heart disease diagnosis, detection for ECG signal is an important aspect, but the noise of ECG signal is very strong. In order to filter noise of ECG signal effectively and demarcate characteristic points of signal accurately, the denoising algorithm of wavelet transform with threshold and algorithm of modulus maximum - minimum based on wavelet transform to process ECG signal are adopted. The data of MIT/ BIH is used to test the algorithm by simulating. The experimental results show the noise is removed effectively, while the ECG signal is reserved, and feature point can be accurately demarcated, so the efficiency of heart disease diagnoses should be enhanced.
出处 《电声技术》 2012年第10期41-44,共4页 Audio Engineering
关键词 心电信号 小波变换 bior3.7 去噪 MIT/BIH ECG signal wavelet transform bior3.7 denoise MIT/BIH
  • 相关文献

参考文献5

二级参考文献13

  • 1朱泽煌,胡广书,郭恒,崔子经.MIT—BIH心电数据库的开发及用作检测标准[J].中国生物医学工程学报,1993,12(4):244-249. 被引量:25
  • 2I. Daubechies. Ten lectures on wavelets, CBMSNSF Regional Conference Series in Application Mathematics, SIAM Press, Philadelphia Pennsylvania, Vol. 61,1992.
  • 3S. Mallat. A theory for multiresolution signal decomposition: The wavelet representation. IEEE trans. Patt. Anal. Machine intell.,Vol. 11, No. 7,1989. pp. 674 - 93
  • 4S. Mallat. Multifrequency channel decompositions of images and wavelet models. IEEE trans. Acoust. Speech Signal Processing,Vol. 37 Dec. 1989
  • 5I. Daubechies. Orthogonal bases of compactly supported wavelets.Commun. Pure Appl. Math., Vol. XLI, 1998
  • 6Ingrid Daubechies. The Wavelet Transform,Time-Frequency Localization and Signal Analysis[J]. IEEE Trans. on IT,1990,36:961.
  • 7Mallat Stephane G. A Theory for Multiresolution Signal Decomposition: The Wavelet Representation[J]. IEEE Trans. on PAMI,1989,11:674.
  • 8Mallat Stephane G. Singularity Detection and Processing with Wavelets[J]. IEEE Trans. on IT,1992,138:617.
  • 9Li Gang,Ye Wenyu,Lin Ling. An Artificial-Intelligence Approach to ECG Analysis[J]. IEEE Engineering In Medicine and Biology,2000.
  • 10Sanambi J S. Using Wavelet Transformation for ECG Characterization[J]. IEEE Engineering in Medicine and Biology,1997.

共引文献76

同被引文献31

  • 1刘洪艳,曲秀芬.心源性猝死患者的临床特点及动态心电图特征[J].心电图杂志(电子版),2014,3(2). 被引量:2
  • 2肖宪波,胡广书,刘春红.基于形态学的数字助听器单频段压缩放大算法[J].清华大学学报(自然科学版),2005,45(12):1680-1683. 被引量:5
  • 3张琳,严洪.基于复杂度的心电图形态相关性分析[J].生物医学工程研究,2007,26(2):196-199. 被引量:3
  • 4Jayachandran E S,Joseph P,Acharya R.Analysis of myocardial infarction using discrete wavelet transform[J].Journal of Medical Systems,2010,34(6):985-992.
  • 5Rieger R,Shin-Liang Deng.Double-differential recording and AGC using microcontrolled variable gain ASIC[J].IEEE Transactions on Neural Systems and Rehabilitation Engineering,2013,21(1):47-54.
  • 6Ribeiro D M D,Fu L S,Cunha J P S.A novel dry active biosignal electrode based on and hybrid organic-inorganic interface material[J].IEEE Sensors Journal,2011,11(10):2241-2245.
  • 7Widrow B,Glover J R,Mc Cool J M,et al.Adaptive noise cancelling:principles and applications[J].Proceeding of the IEEE,1975,63(12):1692-1716.
  • 8Ziarani Alireza K.A nonlinear adaptive method of elimination of power line interference in ECG signals[J].IEEE Transactions on Biomedical Engineering,2002,49(6):540-547.
  • 9Rahman M Z U,Shaik R A,Reddy Dvrk.Efficient and simplified adaptive noise cancelers for ECG sensor based remote health monitoring[J].IEEE Sensors Journal,2012,12(3):566-573.
  • 10Smital L,Vitek M,Kozumplik J,et al.Adaptive wavelet wiener filtering of ECG signals[J].IEEE Transactions on Biomedical Engineering,2013,60(2):437-445.

引证文献3

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部