期刊文献+

线性积分-微分方程组的CAS小波数值解法(英文)

Solving system of linear integro-differential equations by using CAS wavelets method
下载PDF
导出
摘要 利用已建立的CAS小波算子矩阵数值求解一类线性积分-微分方程组,通过CAS小波逼近理论将积分-微分方程组离散化为代数方程组,最后利用数值算例验证数值求解方法的有效性. In this paper, CAS wavelets operational matrix was a direct computational method for solving the system of linear integro-differential equations. CAS wavelets approximating method was utilized to reduce the system of integro-differential equations to some algebraic equations. Some numerical examples were served to illustrate the pertinent features of the method.
出处 《安徽大学学报(自然科学版)》 CAS 北大核心 2012年第5期6-11,共6页 Journal of Anhui University(Natural Science Edition)
基金 Supported by the National Natural Science Foundation of China(11261041,10962008) the Natural Science Foundation of Ningxia(NZ1101) the Scientific Research Foundation of Ningxia University(NDZR10-32)
关键词 线性积分-微分方程组 CAS小波 算子矩阵 乘积算子矩阵 system of linear integro-differential equations CAS wavelets operational matrix product operational matrix
  • 相关文献

参考文献12

  • 1Zhu T L, Lin W. The numerical solutions of a weak singular integral equation basing on interval wavelet [ J ]. Journal of Ningxia University( Natural Science Edition), 1998,19( 1 ) :58-59.
  • 2Alexander P A, Alexander G K. Application of wavelets technique to the integral equations of the method of auxiliary currents[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2003 ,79/80 :495-508.
  • 3Chen Z Y, Micchelli A C, Xu Y S. Discrete wavelet Petrov-Galerkin methods [ J ]. Advances in Computational Mathematics, 2002,16 : 1-28.
  • 4Maleknejad K, Shamloo A S. Numerical solution of singular Voherra integral equations system of convolution type by using operational matrices [ J ]. Appl Math Comp, 2008,195:500-505.
  • 5Maleknejad K, Nouri K, Yousefi M. Discussion on convergence of Legendre polynomial for numerical solution of integral equations [ J ]. Applied Math and Comp,2007,193:335-339.
  • 6Maleknejad K, Mahmoudi Y. Taylor polynomial solution of high-order nonlinear Volterra-Fredholm integro-differential equations [ J ]. Appl Math Comp, 2003,145:641-653.
  • 7Rashed M T. Numerical solution of special type of integro-differential equations[ J ]. Appl Math Comp ,2003,143:73- 88.
  • 8Han D D F, Shang X X F. Numeriealsolution of integro-differential equations by using CAS wavelet operational matrix of integration[ J]. Appl Math Comp ,2007 ,194 :460-466.
  • 9Avudainyagam A, Vani C. Wavelet-Galerkin method for integro-differential equation[J]. Applied Numeircal Mathematics, 2000,32:247-264.
  • 10Tavassoli K M, Ghasemi M, Babolian E. Numerical solution of integro-differential equations by using sine-cosine wavelets [ J ]. Appl Math Comp, 2006,180 : 569-574.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部