期刊文献+

改进FCM算法在医学图像分割的方法研究

The Research of Modified Fuzzy C-Means Clustering Algorithm On Medical Image Segmentation
下载PDF
导出
摘要 本文提出使用改进模糊C均值聚类(MFCM)算法和模糊可能性C均值聚类(FPCM)算法的图像分割方法并应用于医学图像分割过程中。MFCM算法是通过调整FCM算法的测量距离来批准标签像素受到其他图像像素和在切分中抑制噪声效果来约束,从而使得成员变量没有最大约束值。基于真实医学图像的实验表明了MFCM算法和FPCM算法在医学图像中进行分割的实际效果,具体是通过对FCM、MFCM、FPCM进行精度对比来验证算法有效性。 The paper proposes the Modified Fuzzy C-Means (MFCM) algorithm and fuzzy C-Means clustering (FPCM) algorithm for image segmentation and its application in medical image process. MFCM algorithm is adopted to adjust the traditional FCM algorithm to measure the distance to approval by other labels pixel image pixels and noise suppression effect in syncopation to constraint, so that the member variable no maximum constraint. The real image experiments show that the Modified FCM algorithm in medical image segmentation results, specifically through the traditional FCM, Modified FCM, FPCM accuracy compared to verify the algorithm validity.
作者 李鹏
出处 《数字技术与应用》 2012年第9期116-117,119,共3页 Digital Technology & Application
基金 湖北省教育厅优秀中青年资助项目(Q20111311)
关键词 FCM聚类算法 MFCM FPCM 医学图像处理 图像分割 Fuzzy C-Means Clustering Algorithm Modified FCM Fuzzy Possibilistic C-Means Clustering Algorithm Medical Image Processing Image Segmentation
  • 相关文献

参考文献12

  • 1K. Harisj'Hybrid Image Segmentation using Watersheds and Fast Region Merging", IEEE Transactions on Image Processing, vol. 7, no. 12, pp. 1684-1699, 1998.
  • 2W. M. Wells, W. E. LGrimson, R. Kikinis and S. R. Arrdrige, "Adaptive segmentation of MRI data," IEEE Transactions on Medical Imaging, vol. 15, pp. 429-442, 1996.
  • 3D. L. Pham, C. Y. Xu, and J. L. Prince, "A survey of current methods in medical image segmentation," Annual Review on Biomedical Engineering, vol. 2, pp. 315-37, 2000.
  • 4Liew AW-C, and H. Yan, "Current methods in the automatic tissue segmentation of 3D magnetic resonance brain images", Current Medical Imaging Reviews, vol. 2, no. 1, pp.91-103, 2006.
  • 5R. J. Hathaway, and J. C. Bezdek, "Generalized fuzzy c- means clustering strategies using Lp norm distance", IEEE Trans- actions on Fuzzy Systems, vol. 8, pp. 567-572, 2000.
  • 6S. C. Chen, D. Q. Zhang, "Robust image segmentation using FCM with spatial constraints based on new kernel-induced dis- tance measure", IEEE Transactions Systems Man Cybernet, vol. 34, no. 4, pp. 1907-1916, 2004.
  • 7Kenji Suzuki, Hiroyuki Abe, Heber MacMahon, and Kunio Doi, "Image-Processing Technique for Suppressing Ribs in Chest Radiographs by Means of Massive Training Artificial Neural Net- work (MTANN)", IEEE Transactions on medical imaging, vol. 25, no. 4, DD. 406-416, 2006.
  • 8Kazunori Okada, Dorin ComanlclU, anm Au. ,,,,,,,,, Anisotropic Gaussian Fitting for Volumetric Characterization of Pulmonary Nodules in Multi-slice CT", IEEE Transactions on Medical Imaging, vol. 24, no. 3, pp. 409-423, 2005.
  • 9Ingrid Sluimer, Mathias Prokop, and Bram van lnneKen, "Toward Automated Segmentation of the Pathological Lung in CT", IEEE Transactions on Medical Imaging, vol. 24, no.8, pp. 1025-1038, 2005.
  • 10Payel Ghosh, and Melanie Mitchell,"Segmentation of medical images using a genetic algorithm", Proceedings of the 8th annual conference on Genetic and evolutionary computation, pp. 1171-1178, 2006.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部