期刊文献+

基于可信度信息的改进加权比特翻转算法 被引量:2

Improved weighted bit-flipping decoding algorithm based on reliability information
下载PDF
导出
摘要 在研究几种加权比特翻转算法的基础上,提出了一种新的针对LDPC码的改进加权比特翻转算法。加权比特翻转(WBF)算法中的错误度量考虑了校验节点的可信度信息,在此基础上,相关的改进WBF(IWBF)算法考虑了消息本身对符号判决的影响,进一步提高了性能。但是在IWBF算法中,必须通过仿真,才能获得使译码性能较优的符号可信度加权参数。提出了一种同时考虑符号可信度和校验可信度的算法,不需要调整加权参数,即可获得较优性能。仿真显示提出的加权比特翻转算法是可行且有效的。 Bit-Flopping(BF) algorithm and several Weighted BF(WBF) algorithms are investigated, based on which, a new improved WBF(IWBF) decoding algorithm for LDPC codes is proposed. The error metric in WBF considers the check information. Based on that, the IWBF algorithm further considers the impact of message reliability on the symbol decision, but the weighting parameters must be obtained through simulation to achieve better decoding performance. Considering both the check information and the message reliability, the new IWBF decoding algorithm can achieve better decoding performance, but do not bother to choose the weighting parameters. The simulation results show that the proposed algorithm is effective, and can achieve a good decoding performance.
出处 《计算机工程与应用》 CSCD 2012年第31期112-114,共3页 Computer Engineering and Applications
基金 江苏省教育厅自然科学基金(No.06KJB520005) 江苏省"六大人才高峰"项目(No.06-E-028)
关键词 LDPC码 加权比特翻转 符号可信度 LDPC codes Weighted Bit-Flipping(WBF) message reliability
  • 相关文献

参考文献9

  • 1ETSI EN 302 307 second generation framing structure, channel coding and modulation system for broadcasting, interactive services, news gathering and other broadband satellite applications[S].2004-01.
  • 2Fossorier M P C.Quasi-cyclic low-density parity-check codes from circulant permutation matrices[J].IEEE Trans on Information Theory, 2004,50 (8) : 1788-1793.
  • 3Kiran K G, Gwan S C.A parallel VLSI architecture for layered decoding for array LDPC codes[C]//Proceeding of the 20th International Conference on VLSI Design, 2007.
  • 4MacKay D J C.Good error-correcting codes based on very sparse matrices[J].IEEE Trans on Inform Theory, 1999,45 : 399-432.
  • 5Tanner R M.A recursive approach to low complexity codesp[J].IEEE Transactions on Information Theory, 1981,27 : 533-547.
  • 6Gallager R G.Low-density parity-check codes[J].IRE Transactions on Information Theory, 1962,8 : 21-28.
  • 7Kou Y, Lin S, Fossorier M.Low-density parity-check codes based on finite geometries: a rediscovery and new results[J].IEEE Transactions on Information Theory,2001, 47: 2711-2736.
  • 8Zhang J, Fossorier M P C.A modified weighted bit-flipping decoding of low-density parity-check codes[J].IEEE Communications Letters,2004,8: 165-167.
  • 9Mackay, Encyclopedia of Sparse Graph Codes[EB/OL].[2011-03].http ://www.inference.phy.cam.ac .uk/mackay/codes/ data.html#125.

同被引文献22

  • 1陈俊斌,王琳,徐位凯.突发信道下多进制LDPC码的性能研究[J].现代电子技术,2006,29(9):1-3. 被引量:1
  • 2Fossorier M P C.Quasi-cyclic low density parity check codes from circulant permutation matrices[J].IEEE Trans on Info Theory,2004,50(8):1788-1793.
  • 3Tanner R M.A recursive approach to low complexity codes[J].IEEE Trans on Info Theory,1981,27(5):533-548.
  • 4Zhang Fan,Mao Xuehong,Zhou Wuyang.Girth-10 LDPC codes based on 3-D cyclic lattices[J].IEEE Trans on Vehicular Technology,2008,57(2):1049-1060.
  • 5Kim S,Chung H.On the girth of Tanner(3,5)quasicyclic LDPC codes[J].IEEE Trans on Info Theory,2006,52(4):1739-1744.
  • 6Wang Yige,Draper S C,Yedidia J S.Hierarchical and high girth QC LDPC codes[J].IEEE Trans on Info Theory,2013,59(7):4553-4583.
  • 7Kang J,Fan P,Cao Z.Flexible construction of irregular partitioned LDPC codes with low error floors[J].IEEE Communications Letters,2005,9(6):534-536.
  • 8Myung S,Yang K.Lifting methods for quasi-cyclic LDPC codes[J].IEEE Communications Letters,2006,10(6):489-491.
  • 9Sharon E,Lisyn S.Constructing LDPC codes by error minimization progressive edge growth[J].IEEE Trans on Communications,2008,56(3):359-368.
  • 10Xu Y,Wei G.On the construction of quasi-systematic block-circulant LDPC codes[J].IEEE Commun Letters,2007,11(11):886-888.

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部