期刊文献+

双树复小波域的邻域自适应贝叶斯收缩去噪 被引量:5

Neighboring adaptive BayesShrink image denoising in dual-tree complex wavelet transform
下载PDF
导出
摘要 为了更加高效去除图像采集或传输中引入的噪声,提出了一种基于双树复小波域的邻域自适应贝叶斯收缩的图像去噪方法,利用了双树复小波变换的平移不变性和更多的方向选择性的优点,并考虑了系数间的局部自适应邻域相关性,以尺度适合的窗口为单位估计相应系数的方差,利用滑窗求其平均作为整个子带的图像方差,通过贝叶斯收缩来处理小波系数,从而实现高效的图像去噪。实验结果证明,该方法取得了很高的峰值信噪比和更好的视觉效果,去噪性能优良。 In order to remove noise which is introduced by image acquisition or transmission more effectively, a neighboring adaptive Bayesian shrinkage image denoising method in dual-tree complex wavelet domain is proposed. This method makes use of the translation invariance and the advantage of more direction selective of the dual-tree complex wavelet transform, and the local adaptive neighborhood correlation of the coefficient is also considered. The variance of the corresponding coefficient of the appropriate neighborhood full inch window is estimated, the average of the variance which is used as the variance of the whole sub-band image is calculated using the sliding window. BayesShrink method is used to handle the wavelet coefficients to achieve efficient image denoising. The experimental results show that the proposed method gets higher PSNR and better visual expression. The denoising performance is excellent.
作者 张稳稳
出处 《计算机工程与应用》 CSCD 2012年第31期156-160,165,共6页 Computer Engineering and Applications
基金 国家高技术研究发展计划(863)(No.2009AA011706)
关键词 图像去噪 双树复小波变换 邻域自适应 贝叶斯收缩 image denoising dual-tree complex wavelet transform neighboring adaptive BayesShrink
  • 相关文献

参考文献13

  • 1Mehdi N,Hossein N.Image denoising in the wavelet domain using a new adaptive threholding function[J].Neurocomputing, 2009,72: 1012-1025.
  • 2Donoho D L, Johnstone I M.Ideal spatial adaptation via wavelet shrinkage[J].Biometrika, 1994,81 (3) : 425-455.
  • 3Chang S G, Yu B, Vattereli M.Adapfive wavelet thresholding for image denoising and compression[J].IEEE Trans on Image Processing,2000,9(9): 1532-1546.
  • 4Sendur L, Selesnick I W.Bivariate shrinkage functions for wavelet-based denoising exploit-ting inter-scale dependency[J].IEEE Trans on Signal Processing,2002,50(11): 2744-2756.
  • 5Zhou D W, Shen X L, Image denoising using block thresholding[C]//Proceedings of the Congress on Image and Signal Processing,2008: 335-338.
  • 6Dongwook C, Tien D B, Chen G Y.Image denoising based on wavelet shrinkage using neighbor and level dependency[J].Intemational Journal of Wavelets Multiresolution and Information Processing, 2009,7 (3) : 299-311.
  • 7宫霄霖,毛瑞全,刘开华.基于自适应邻域系数的小波图像阈值降噪[J].计算机工程,2010,36(11):206-208. 被引量:6
  • 8武海洋,王慧,程宝琴.基于最小Bayes风险的小波域局部自适应图像去噪[J].计算机应用,2010,30(A12):3238-3240. 被引量:5
  • 9刘薇,徐凌,杨光.基于双树复小波二元统计模型的图像去噪方法[J].中国图象图形学报,2009,14(7):1291-1297. 被引量:6
  • 10杨国梁,闫谦时.基于贝叶斯估计的双树复小波图像降噪技术[J].西安工程大学学报,2009,23(3):75-79. 被引量:4

二级参考文献33

  • 1侯建华,熊承义,田晓梅.广义高斯分布及其在图像去噪中的应用[J].中南民族大学学报(自然科学版),2005,24(3):44-47. 被引量:12
  • 2侯建华,田金文.基于贝叶斯最大后验估计的局部自适应小波去噪[J].计算机工程,2006,32(11):13-15. 被引量:13
  • 3李旭超,朱善安.小波域图像降噪概述[J].中国图象图形学报,2006,11(9):1201-1209. 被引量:42
  • 4汪太月,李志明.一种广义高斯分布的参数快速估计法[J].工程地球物理学报,2006,3(3):172-176. 被引量:38
  • 5Donobo D L Denoising by soft-thresholding[J].IEEE Transactions on Information Theory,1995,41(3):613-627.
  • 6Donoho D L,Johnstone L M.Adapting to unknown smoothness via wavelet shrinkage[J].Journal of American Statistic Association,1995,90(12):1200-1224.
  • 7Crouse M S,Nowak R D,Baraniuk R G.Wavalet-bseed statistical signal processing using hidden Markov models[J].IEEE Transactions on Signal Processing,1998,46(4):886-902.
  • 8Chan8 S,Yu B,Vetterli M.Adaptive wavelet thresholding for image denoising and compression[J].IEEE Transactions on Image Processing,2000,9(9):1532-1546.
  • 9Cai T T,Wilverman B W.Incorporating information on neighboring coefficients into wavelet estimation[J].The Indian Journal of Statistics,2001,63(2):127-148.
  • 10Chen G Y,Bui T D.Multiwavelet denoiaing using neighboring coefficients[J].IEEE Tnmsaetions on Signal Processing Letters,2003,10(7):211-214.

共引文献15

同被引文献45

引证文献5

二级引证文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部