期刊文献+

一种新的求解线性方程组的外推加速方法

A NEW EXTRAPOLATION ACCELERATION METHODS FOR LINEAR SYSTEMS
原文传递
导出
摘要 本文提出两种优化模型,通过在子空间{x^((k))…,x^((k-m))}上寻找最优解,建立了一种新的外推加速方法.讨论了该方法的收敛性和收敛速度.最后,通过三个数值实例展示了算法是可行的和有效的. In this paper, we present two models of optimization and establish a new extrapolation acceleration method based on finding the optimal solution in subspace {x(k),…,x(k=m)|. We also discuss the convergence and convergent rate. Finally, we show that the new method is feasible and effective by three numerical examples.
出处 《计算数学》 CSCD 北大核心 2012年第4期387-396,共10页 Mathematica Numerica Sinica
基金 国家自然科学基金(11071184) 山西省自然科学基金(2010011006 2012011015-6) 山西省高等学校科技项目(20111121)资助
关键词 外推加速法 收敛性 收敛率 线性方程组 extrapolation acceleration method convergence convergent rate linear systems
  • 相关文献

参考文献8

  • 1Golub G H, Van Loan C F. Matrix Computations[M]. The Johns Hopkins University Press, 1996.
  • 2Golub G H, Varga R S. Chebychev semi-iterative methods, successive over-relaxation iterative methods, and second-order Richardson iterative methods, Parts I and II[J]. Numer. Math. 1961, 3: 147-168.
  • 3Varga R S. Matrix Iterative Analysis[M]. 2nd Edition, Berlin, Springer, 2000.
  • 4Calvetti D, Golub G H and Reichel L. An adaptive Chebyshev iterative method for nonsymmetric linear systems based on modified moments[J]. Numer. Math. 1994, 67: 21-40.
  • 5Ortega J M. Numerical Analysis-A Second Course[M]. Academic, New York, 1972.
  • 6Berman A, Plemmons R J. Nonnegative Matrices in the Mathematical Science[M]. Academic Press, New York, 1979.
  • 7Frommer A, Syzld D B. Weighted max norms, splittings, and overlapping additive Schwarz iter- ations[J]. Numer. Math. 1997, 75: 48-62.
  • 8Bai Z Z, Golub G H, Lu L Z and Yin J F. Block triangular and skew-Hermitian splitting methods for positive-definite linear systems[J]. SIAM J. on Sci. Comput. 2005, 26: 844-863.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部