期刊文献+

粘弹性方程全离散化有限体积元格式及数值模拟 被引量:3

A FULLY DISCRETE FINITE VOLUME ELEMENT FORMULATION AND NUMERICAL SIMULATIONS FOR VISCOELASTIC EQUATIONS
原文传递
导出
摘要 本文利用有限体积元方法研究二维粘弹性方程,给出一种时间二阶精度的全离散化有限体积元格式,并给出这种全离散化有限体积元解的误差估计,最后用数值例子验证数值结果与理论结果是相吻合的.通过与有限元方法和有限差分方法相比较,进一步说明了全离散化有限体积元格式是求解二维粘弹性方程数值解的最有效方法之一. In this paper, two-dimensional (2D) viscoelastic equations are studied with a finite volume element (FVE) method, a fully discrete finite volume element formulation with second order time accuracy is established, and the error estimates of the discrete FVE solutions are provided. A numerical example is used to illustrate the fact that the results of numerical computation are consistent with theoretical conclusions. Moreover, it has shown that the fully discrete FVE formulation is one of the most efficient for finding numerical solutions of 2D viscoelastic equations by comparing with the numerical results of a fully discrete finite element formulation and a finite difference scheme.
出处 《计算数学》 CSCD 北大核心 2012年第4期413-424,共12页 Mathematica Numerica Sinica
基金 国家自然科学基金(批准号:11061009、11061021和11271127) 河北省自然科学基金(批准号:A2010001663) 内蒙古自然科学基金(批准号:2012MS0106) 贵州省科技计划课题(批准号:QKJ[2011]2367) 内蒙古自治区高等学校研究项目(批准号:NJ10006)
关键词 有限体积元方法 误差分析 数值模拟 粘弹性方程 finite volume element method error analysis numerical simulation viscoelastic equations
  • 相关文献

参考文献2

二级参考文献19

  • 1曹艳华.二维线性Sobolev方程广义差分法[J].计算数学,2005,27(3):243-256. 被引量:12
  • 2袁益让.三维热传导型半导体问题的差分方法和分析[J].中国科学(A辑),1996,26(11):973-978. 被引量:33
  • 3袁益让 王宏.非线性双曲型方程有限元方法的误差估计[J].系统科学与数学,1985,5(3):161-171.
  • 4Gurtin M,Pipkin A.A general theory of heat conduction with finite wave speeds[J].Arch Rational Mech.Anal.,1968,31:113-126.
  • 5Raynal M.On some nonlinear problems of diffusion in Volterra Equations,London S,Staffans O.eds.,Lecture notes in Math.,737,Springer-Verlag,Berlin,Newyork,1979:251-266.
  • 6Suveika K.Mixed problems for an equation describing the propagation of disturbances in viscous media[J] J.Differential Equations,1982,19:337-347.
  • 7Lin Y P.A mixed boundary problem describing the propagation of disturbances in viscous media solution for quasi-linear equations[J].J.Math.Anal.Appl,1988,135:644-653.
  • 8Cannon J R,Lin Y.A Priori L2 error estimates for finite-element methods for nonlinear diffusion equations with memory[J].SIAM J.Numer.Anal.,1990,27(3):595-607.
  • 9Li Q.Generalized difference method,Lecture Notes of the Twelfth Mathematical Workshop[M],Taejon,Korea,1997.
  • 10Li Q,Liu Z Y,Finite volume element methods for nonlinear parabolic problems[J].J.KSIAM,2002,6(2):85-97.

共引文献27

同被引文献27

引证文献3

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部