期刊文献+

一类非线性外问题的数值解法

NUMERICAL METHOD FOR A KIND OF NONLINEAR EXTERIOR PROBLEM
原文传递
导出
摘要 本文利用FEM-BEM方法研究平面上一类非线性外问题数值方法,给出了基于非线性人工边界条件的耦合问题收敛性结果和误差估计.数值算例验证了我们的理论分析结果.最后,我们提出求解其耦合问题的一种区域分解算法. We consider the FEM-BEM method of the computation for nonlinear exterior problem and focus on the convergence result, which is based on nonlinear artificial boundary condition. Moreover, the error estimate is obtained. Some numerical examples are provided to validate the theoretical results. Finally, we present a kind of domain decomposition method to solve the coupling problem.
出处 《计算数学》 CSCD 北大核心 2012年第4期437-446,共10页 Mathematica Numerica Sinica
基金 国家自然科学基金(11001168) 上海市重点学科(J50101)资助
关键词 有限元 边界元 非线性 外问题 区域分解 FEM BEM nonlinear exterior problems domain decomposition
  • 相关文献

参考文献1

二级参考文献1

  • 1WU Zhengpeng, KANG Tong & YU DehaoInstitute of Computational Mathematics and Scientific/Engineering Computing, Academy of Mathematics and System Sciences, Chinese Academy of Sciences, Beijing 100080, China,Department of Applied Mathematics, Beijing Broadcasting Institute, Beijing 100024, China,Combinatorial and Computational Mathematics Center, Pohang University of Science and Technology, Phoang 790-784, Republic of Korea.On the coupled NBEM and FEM for a class of nonlinear exterior Dirichlet problem in R^(2*)[J].Science China Mathematics,2004,47(z1):181-189. 被引量:4

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部