期刊文献+

Effects of Metal Oxide Modifications on Photoelectrochemical Properties of Mesoporous TiO2 Nanoparticles Electrodes for Dye-Sensitized Solar Cells

Effects of Metal Oxide Modifications on Photoelectrochemical Properties of Mesoporous TiO2 Nanoparticles Electrodes for Dye-Sensitized Solar Cells
下载PDF
导出
摘要 Mesoporous TiO2 (m-TiO2) nanoparticles were used to prepare the porous film electrodes for dye-sensitized solar cells, and a second metal oxide (MgO, ZnO, A1203, or NiO) modifi- cation was carried out by dipping the m-TiO2 electrode into their respective nitrate solution followed by annealing at 500 ℃. Experimental results indicated that the above second metal oxide modifications on m-TiO2 electrode are shown in all cases to act as barrier layer for the interracial charge transfer processes, but film electron transport and interfacial charge recombination characteristics under applied bias voltage were dependent significantly on the existing states and kinds of these second metal oxides. Those changes based on sec- ond metal oxide modifications showed good correlation with the current-voltage analyses of dye-sensitized solar cell, and all modifications were found to increase the open-circuit photo- voltage in various degrees, while the MgO, ZnO, and NiO modifications result in 23%, 13%, and 6% improvement in cell conversion efficiency, respectively. The above observations indi- cate that controlling the charge transport and recombination is very important to improve the photovoltaic performance of TiO2-based solar cell.
出处 《Chinese Journal of Chemical Physics》 SCIE CAS CSCD 2012年第5期609-616,I0004,共9页 化学物理学报(英文)
关键词 Dye-sensitized solar cell Metal oxide modification Photoelectrochemical prop-erty Mesoporous TiO2 nanoparticle 染料敏化太阳能电池 纳米金属氧化物 介孔二氧化钛 电池电极 光电化学性质 修改 TiO2电极 界面电荷
  • 相关文献

参考文献34

  • 1B. O’Regan and M. Gratzel, Nature 353, 737 (1991).
  • 2Q. Wang, S. Ito, M. Gratzel, F. Fabregat-santiago, I. Mora-Sero, J. Bisquert, T. Bessho, and H. Imai, J. Phys. Chem. B 110, 25210 (2006).
  • 3J. C. Liu, Y. J. Wang, and D. R. Sun, Renewable Energy 38, 214 (2012).
  • 4J. H. Park, J. Y. Kim, J. H. Kim, C. J. Choi, H. S. Kim, Y. E. Sung, and K. S. Ahn, J. Power Sources 196, 8904 (2011).
  • 5M. Adachi, Y. Murata, J. Takao, J. T. Jiu, M. Sakamoto, and F. M. Wang, J. Am. Chem. Soc. 126, 14943 (2004).
  • 6M. Y. Song, D. K. Kim, K. J. Ihn, S. M. Jo, and D. Y. Kim, Nanotechnology 15, 1861 (2004).
  • 7S. Ngamsinlapasathian, S. Pavasupree, Y. Suzuki, and S. Yoshikawa, Solar Energy Mater. Solar Cells 90, 3187 (2006).
  • 8K. Pan, W. Zhou, G. H. Tian, Q. J. Pan, C. H. Tian, T. F. Xie, Y. Z. Dong, D. J. Wang, and H. G. Fu, Eur. J. Inorg. Chem. 30, 4730 (2011).
  • 9V. Gonzalez-Pedro, Z. Q. Xu, I. Mora-Sero, and J. Bisquert, ACS Nano 4, 5783 (2010).
  • 10M. S. Wu, C. H. Tsai, J. J. Jow, and T. C. Wei, Elec-trochim. Acta 56, 8906 (2011).

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部