期刊文献+

Inverted Organic Solar Cells with Improved Performance using Varied Cathode Buffer Layers 被引量:1

Inverted Organic Solar Cells with Improved Performance using Varied Cathode Buffer Layers
下载PDF
导出
摘要 有转换平面异质接面结构的器官的太阳能电池作为阴极缓冲区层(CBL ) 用几种材料基于 subphthalocyanine 和 C60 被制作,包括 tris-8-hydroxy-quinolinato 铝(Alq3 ) , bathophenanthroline (Bphen ) , bathocuproine, 2,3,8,9,14,15-hexakis-dodecyl-sulfanyl-5,6,11,12,17,18-hexaazatrinaphthylene (HATNA ) ,和 Cs2CO3 的无机的混合物。最低没有住的分子的轨道的水平和太阳能电池表演上的器官的 CBL 的电子活动性的影响被比较。结果证明 Alq3, Bphen,和 HATNA 能显著地改进设备表演。最高的效率作为 CBL 与退火的 HATNA 从设备被获得并且没有 CBL,与设备相比在超过 7 次增加了。而且,有空间费用有限电流理论的模拟结果显示在在转换振荡结构的 organic/electrode 接口的 Schottky 障碍被插入 HATNA CBL 为 27% 减少。 Organic solar cells with inverted planar heterojunction structure based on subphthalocya- nine and C60 were fabricated using several kinds of materials as cathode buffer layer (CBL), including tris-8-hydroxy-quinolinato aluminum (Alq3), bathophenanthroline (Bphen), bathocuproine, 2,3,8,9,14,15-hexakis-dodecyl-sulfanyl-5,6,11,12,17,18-hexaazatrinaphthylene (HATNA), and an inorganic compound of Cs2CO3. The influence of the lowest unoccupied molecular orbital level and the electron mobility of organic CBL on the solar cells perfor- mance was compared. The results showed that Alq3, Bphen, and HATNA could significantly improve the device performance. The highest efficiency was obtained from device with an- nealed HATNA as CBL and increased for more than 7 times compared with device without CBL. Furthermore~ the simulation results with space charge-limited current theory indicated that the Schottky barrier at the organic/electrode interface in inverted OSC structure was reduced for 27% by inserting HATNA CBL.
出处 《Chinese Journal of Chemical Physics》 SCIE CAS CSCD 2012年第5期625-630,I0004,共7页 化学物理学报(英文)
关键词 有机太阳能电池 电池性能 缓冲层 阴极 多样化 分子轨道能级 ALQ3 十二烷基 Organic solar cell, Inverted structure, Subphthalocyanine/C60, Cathode bufferlayer, Space charge-limited current theory
  • 相关文献

参考文献32

  • 1X. W. Zhan and D. B. Zhu, Polym. Chem. 1, 409 (2010).
  • 2W. Z. Cai, X. Gong, and Y. Cao, Sol. Energy Mater. Sol. Cells. 94, 114 (2010).
  • 3J. Huang, J. S. Yu , Z. Q. Guan, and Y. D. Jiang, Appl. Phys. Lett. 97, 143301 (2010).
  • 4L. M. Chen, Z. R. Hong, G. Li, and Y. Yang, Adv. Mater. 21, 1434 (2009).
  • 5M. Y. Song, K. J. Kim, and D. Y. Kim, Sol. Energy Mater. Sol. Cells 85, 31 (2005).
  • 6T. W. Ng, M. F. Lo, Y. C. Zhou, Z. T. Liu, C. S. Lee, O. Kwon, and S. T. Lee, Appl. Phys. Lett. 94, 193304 (2009).
  • 7M. N. Shan, S. S. Wang, Z. Q. Bian, J. P. Liu, and Y. L. Zhao, Sol. Energy Mater. Sol. Cells, 93, 1613 (2009).
  • 8F. J. Zhang, D. W. Zhao, Z. L. Zhuo, H. Wang, Z. Xu, and Y. S. Wang, Sol. Energy Mater. Sol. Cells 94, 2416 (2010).
  • 9J. S. Yu, J. Huang, L. Zhang, and Y. D. Jiang, J. Appl. Phys. 106, 063103 (2009).
  • 10N. N. Wang, J. S. Yu, H. Lin, and Y. D. Jiang, Chin. J. Chem. Phys. 23, 84 (2010).

同被引文献1

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部