期刊文献+

Stochastic calculus for Markov processes associated with non-symmetric Dirichlet forms 被引量:4

Stochastic calculus for Markov processes associated with non-symmetric Dirichlet forms
原文传递
导出
摘要 Nakao's stochastic integrals for continuous additive functionals of zero energy are extended from the symmetric Dirichlet forms setting to the non-symmetric Dirichlet forms setting. ItS's formula in terms of the extended stochastic integrals is obtained. Nakao's stochastic integrals for continuous additive functionals of zero energy are extended from the symmetric Dirichlet forms setting to the non-symmetric Dirichlet forms setting.It 's formula in terms of the extended stochastic integrals is obtained.
出处 《Science China Mathematics》 SCIE 2012年第11期2195-2203,共9页 中国科学:数学(英文版)
基金 supported by National Natural Science Foundation of China (Grant No.10961012) Natural Sciences and Engineering Research Council of Canada (Grant No. 311945-2008)
关键词 non-symmetric Dirichlet form Fukushima's decomposition continuous additive functional of zeroenergy stochastic integral Ito's formula 随机积分 非对称 狄氏型 马氏过程 微积分 添加剂 设置 泛函
  • 相关文献

参考文献16

  • 1Albeverio S, Fan R Z, R6ckner M, et al. A remark on coercive forms and associated semigroups. Operator Theory Adv Appl, 1995, 78:1-8.
  • 2Chen Z Q, Fitzsimmons P J, Kuwae K, et al. Stochastic calculus for symmetric Markov processes. Ann Probab, 2008, 36:931-970.
  • 3Chen Z Q, Ma Z M, R6ckner M. Quasi-homeomorphisms of Dirichlet forms. Nagoya Math J, 1994, 136:1 15.
  • 4FSllmer H. Calcul d'It5 sans probabilits. In: Seminar on Probability, XV. Strasbourg: University Strasbourg, 1979/1980. In: Lecture Notes in Mathematics, vol. 850. Berlin: Springer, 1981, 143-150.
  • 5FSllmer H. Dirichlet processes, Stochastic integrals. In: Lecture Notes in Mathematics, vol. 851. Berlin: Springer, 1981, 476-478.
  • 6Fukushima M, Oshima Y, Takeda M. Dirichlet Forms and Symmetric Markov Processes. Berlin: Walter de Gruyrer, first edition, 1994; second revised and extended edition, 2011.
  • 7Hu Z C, Ma Z M, Sun W. Extensions of Lvy-Khintchine formula and Beurling-Deny formula in semi-Dirichlet forms setting. J Funct Anal, 2006, 239:179-213.
  • 8Hu Z C, Ma Z M, Sun W. On representations of non-symmetric Dirichlet forms. Potential Anal, 2010, 32:101-131.
  • 9Kim J H. Stochastic calculus related to non-symmetric Dirichlet forms. Osaka J Math, 1987, 24:331 371.
  • 10Kuwae K. Stochastic calculus over symmetric Markov processes without time reversal. Ann Probab, 2010 38: 1532- 1569.

同被引文献38

  • 1XI Fubao & ZHAO Liqin Department of Mathematics, Beijing Institute of Technology, Beijing 100081, China,School of Mathematical Sciences, Beijing Normal University, Beijing 100875, China.On the stability of diffusion processes with state-dependent switching[J].Science China Mathematics,2006,49(9):1258-1274. 被引量:5
  • 2Bachelier L. Théorie de la spéculation. Ann Sci école Norm Sup, 1900, 17: 21-86.
  • 3Bachelier L. Théorie mathématique du jue. Ann Sci école Norm Sup, 1901, 18: 143-210.
  • 4Bass R F. Stochastic differential equations driven by symmetric stable processes. Séminaire de Probabilités, XXXVI. Lecture Notes in Math, 1801. Berlin: Springer, 2003, 302-313.
  • 5Bass R F, Burdzy K, Chen Z Q. Stochastic differential equations driven by stable processes for which pathwise uniqueness fails. Stochastic Process Appl, 2004, 111: 1-15.
  • 6BertoinJ.Lévy Processes. Cambridge: Cambridge University Press, 1996.
  • 7Blackwell D, Dubins L E. An extension of Skorohod's almost sure representation theorem. Proc Amer Math Soc, 1983,89: 691-692.
  • 8Dawson D A. Measure-Valued Markov Processes. Lecture Notes in Math, 1541. Berlin: Springer-Verlag, 1993.
  • 9Donnelly P, Kurtz T. A countable representation of the Fleming-Viot measure-valued diffusion. Ann Probab, 1996,24: 698-742.
  • 10Donnelly P. Modelling genes: mathematical and statistical challenges in genomics. In: Proceedings of ICM 2006 Madrid, vol. III. Helsinki: European Mathematical Society, 2006, 559-574.

引证文献4

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部