期刊文献+

基于比特向量组的数据流邻近序列模式挖掘算法研究

Mining frequent continuous sequential patterns over data streams based on bit vector structure
原文传递
导出
摘要 引入项的半垂直比特向量结构,提出挖掘数据流邻近序列模式的MCSP-TSW算法.通过改进比特向量组结构和引入两个剪枝策略,提出改进的MCSP-TSW-Imp算法来减少判断一个候选序列是否频繁的时间.实验表明,两种算法空间消耗相当,但MCSP-TSW-Imp算法比MCSP-TSW算法具有较高的时间效率. In this paper, we introduce the semi vertical bit vector structure, then propose a new al gorithm called MCSP TSW to mine frequent continuous sequential pattern from data stream. By im proving the structure and introducing two pruning strategies, an improved algorithm, called MCSP TSW Imp, is developed to further reduce the time of deciding whether a candidate sequence is fre quent or not. Experiments show that the memory usage of two algorithms is almost the same, but MCSP TSW Imp is outperforms than CSP SW in exaeutinn tim,=
出处 《福州大学学报(自然科学版)》 CAS CSCD 北大核心 2012年第5期567-571,共5页 Journal of Fuzhou University(Natural Science Edition)
基金 福建省教育厅科研资助项目(JB07023) 福州大学科技发展基金资助项目(2006-XQ-22)
关键词 邻近序列模式 数据流挖掘 比特向量 continuous sequential pattern data stream mining bit vector
  • 相关文献

参考文献9

  • 1Ezeife C l, Monwar M. SSM: a frequent sequential data stream patterns miner[ C]//Proceedings of the 2007 IEEE Symposium on Computational Intelligence and Data Mining. Honolulu: IEEE, 2007: 120- 126.
  • 2Ho C C, Li Hua - fu, Kuo F F, et al. Incremental mining of sequential patterns over a stream sliding window[ C ]//Proceedings of IEEE International Workshop on Mining Evolving and Streaming Data. Hong Kong: IEEE, 2006:677 -681.
  • 3Huang Qin- hua, Ouyang Wei -min. Mining sequential patterns in data stream [ C ]//The Sixth International Symposium on Neural Networks. Wuhan : [ s. n. ], 2009 : 865 - 874.
  • 4Xu Chuan, Chen Yong, Bie Rong- fang. Sequential pattern mining in data streams using the weighted sliding window model [ C]//15th International Conference on Parallel and Distributed Systems. Shenzhen: [ s. n. ], 2009:886 -890.
  • 5Raissi C, Poncelet P, Teisseire M. Need for speed: mining sequential patterns in data streams[ C ]//Actes des 21iemes Journ- ees Bases de Donnees Avancees. Saint Malo: [ s. n. ], 2005 : 865 - 874.
  • 6Chedy R, Marc P. Mining multidimensional sequential patterns over data streams[ C ]//Data Warehousing and Knowledge Dis- covery. Turin : Spring, 2008 : 263 - 272.
  • 7Chang Lei, Wang teng - jiao, Yang Dong - qing, et al. Seqstream : mining closed sequential patterns over stream sliding win- dows[ C l//Eighth IEEE International Conference on Data. Pisa: IEEE, 2008:83 -92.
  • 8Venceslas L, Symphor J E, Mancheron A, et al. SPAMS: a novel incremental approach for sequential pattern mining in data streams [ J ]. Advances in Knowledge Discovery and Management, 2010, 292 : 201 - 216.
  • 9Li Hua - fei, Lee S Y, Shan M K. DSM - PLW : single - pass mining of path traversal patterns over streaming Web click - sequences[J]. Computer Networks: Special Issue on Web Dynamics, 2006, 50(10) : 1 474 - 1 487.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部