期刊文献+

一种基于图的线性判别分析方法

Linear Discriminant Analysis Method Based on Graph
下载PDF
导出
摘要 线性判别分析(LDA)作为全局性降维的方法,在处理局部性边缘点的问题上存在不足,可能会导致边缘点的误分。针对该问题,提出一种新的降维方法,该方法基于图学习的思想,重新构造图,使得同类之间向中心靠拢的同时,不同类的K个近邻点远离该类中心。这样,高维数据在嵌入低维的过程中保持了样本的局部边缘点的特性,从而保证了边缘点的正确分类。通过在UCI数据集和人脸数据库中实验,结果表明本方法的有效性。 As global dimensionality reduction method, the linear discriminant analysis (LDA) has deficiencies in dealing with localized edge point defi- ciencies, and it may lead to misclassification of edge points. To solve this problem, a new dimensionality reduction method is proposed. The idea of this method is based on the map learning method, we reconstruct the map, make closer to the center of its kind between the same class, at the same times, we make K nearest neighbors to stay away from such centers in different classes. In this way, the high-dimensional data has kept the characteristics of the local edge points of the sample in the process of embedded low-dimensional, and it ensures the correct classification of edge points. We do experi- ments on UCI data sets and face database, the results show that the effectiveness of the method.
出处 《电视技术》 北大核心 2012年第21期43-46,共4页 Video Engineering
基金 俆州市科技计划项目(XX10A001)
关键词 降维 线性判别分析 图学习 dimensionality reduction Linear discriminant analysis map learning
  • 相关文献

参考文献10

  • 1KOKIOPOULOU E,SAAD Y. Enhanced graph-based dimensionality re- duction with repulsion Laplaceans [ J ]. Pattern Recognition, 2009,42 ( 11 ) :2392-2402.
  • 2王飞.图上的半监督学习算法研究[D].北京:清华大学,2008.
  • 3TENENBAUM J B,SILVA V D,LANGFORD J C. A global geometric framework for nonlinear dimensionality reduction[J].Science,2000,290: 2319-2322.
  • 4] ROWEIS S T, SAUL L K. Nonlinear dimensionality reduction by locally linear embedding[ J]. Science,2000, 290:2323-2326.
  • 5李白燕,李平,陈庆虎.基于改进的监督LLE人脸识别算法[J].电视技术,2011,35(19):105-108. 被引量:2
  • 6BELKIN M,NIYOGI P. Laplacian eigenmaps for dimensionality reduction and data representation[J]. Neural Computation,2003,15(6):1373-1396.
  • 7申中华,潘永惠,王士同.有监督的局部保留投影降维算法[J].模式识别与人工智能,2008,21(2):233-239. 被引量:30
  • 8XU D, YAN S, TAO D, et al. Marginal fisher analysis and its variants for human gait recognition and content-based image retrieval[J]. IEEE Trans. Image Processing,2007,16 ( 11 ) :2811-2821.
  • 9ARTINEZ A M,KAK A C. PCA versus LDA[J]. IEEE Trans. Pattern Analysis and Machine Intelligence, 2001,23(2) :228-233.
  • 10罗丞,叶猛.PCA算法在P2P加密流量识别中的研究与应用[J].电视技术,2012,36(3):62-65. 被引量:5

二级参考文献35

共引文献34

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部