期刊文献+

基于时空LBP加权社会力模型的人群异常检测 被引量:6

Abnormal Crowd Behavior Detection Based on LBP-weighted Social Force Model
下载PDF
导出
摘要 针对基于传统社会力模型的人群异常行为检测算法忽视了场景中各个区域信息差异性的问题,考虑到时空LBP序列谱特征的计算简单性和区域代表性,提出了一种基于时空LBP加权社会力模型的人群异常行为检测算法,将时空LBP序列谱特征所包含的时域特性和区域信息融入社会力模型,使得社会力模型更为精确地对人群行为进行建模。实验证明,与传统算法相比,改进后的算法在异常行为的查准率与查全率上有很大的提高。 In view of the situation that traditional anomaly detection algorithms using social force model usually ignore the differences between different regions of the scene, a method of abnormal crowd behavior detection is proposed based on spatiotemporal LBP-weighted social force model. This algorithm integrates the time domain characteristics and regional information contained in the spectral characteristics of spatiotemporal LBP sequence into the social force model ,enabling the model of the crowd more accurate. Experiments show that recall and precision of the proposed algorithm are greatly improved.
出处 《电视技术》 北大核心 2012年第21期145-148,共4页 Video Engineering
基金 上海市科委科技攻关项目(11231203102) 国家自然科学基金项目(61102099)
关键词 光流 局部二值模式 社会力模型 异常检测 optical flow LBP social force model abnormal crowd behavior detection
  • 相关文献

参考文献9

  • 1JACQUES J C S, BRAUN A, SOLDERA J, et al. Understanding people motion in video sequences using voronoi diao'ams[ J ]. Pattern Analysis & Applications,2007,10(4) :321-332.
  • 2KILAMBI P,RIBNICK E JOSHI A J,et al. Estimating pedestrian counts in groups [ J ]. Computer Vision and Image Understanding, 2008, ll0 ( l ) :43-59.
  • 3ANDRADE E,BLUNSDEN S, FISHER R. Modelling crowd scenesfor e- vent detection[ C ]//Proc. 18th International Conference on Pattern Rec- ognition. [ S. 1. ] : IEEE Press ,2006 : 175-175.
  • 4ANDRADE E ,BLUNSDEN S,FISHER R. Hidden markov models for op- tical ow analysis in crowds [ EB/OL]. [ 2012-04-20 ]. http ://citeseerx.ist. psu. edu/viewd-./summary? doi = 10. 1.1.64.212.
  • 5ALl S,SHAH M. A lagrangian particle dynmnics approach for crowd ow segmentation and stability analysis [ C ]//Proc. IEEE Conference on Computer Vision and Pattern Recognition,2007. Minneapolis, MN:IEEE Press,2007 : 1-6.
  • 6HELBING D, MOLNAR P. Social force model for pedestrian dynamics [ J ]. Physical Review E, 1995,51 ( 5 ) :4282-4286.
  • 7MEHRAN R,OYAMA A,SHAH M. Abnormal crowd behavior detection using social force model [ EB/OL ]. [ 2012-04-20 ]. http ://hbra. msra. cn/Publication/6368031/abnormal-crowd-behavior-detection-using-so- cial-force-model.
  • 8YANG Hua,SU Hang,ZHENG Shibao, et al. The large-scale crowd den- sity estimation based on sparse spatiotemporal local binary pattern [ C ]// Proc. 2011 IEEE International Conference on Multimedia and Expo. Bar- celona:IEEE Press,2011:1-6.
  • 9Crowd-Activity- All [ EB/OL ]. [ 2012-04-20]. http ://mha. cs. umn. edu/Movies/Crowd-Activity-All, avi.

同被引文献65

  • 1冯建辉,杨玉静.基于灰度共生矩阵提取纹理特征图像的研究[J].北京测绘,2007,21(3):19-22. 被引量:131
  • 2胡波,李晓华,沈兰荪.场景监控中的人群密度估计[J].电路与系统学报,2007,12(6):19-22. 被引量:19
  • 3ENZWEILER M, GAVRILA D M . Monocular pedestrian detec- tion: survey and experiments [J]. Journal of IEEE Trans. Pat- terra Analysis and Machine Intelligence, 2009, 31 (12) : 2179-2195.
  • 4SHERRAH J, RISTIC B, REDDING N J.Particle fiher to track multiple people for visual surveillance [J].IET Computer Vision, 2011,5(4) : 192-200.
  • 5STEPANOV O A.Kalman filtering: past and present, an outlook from Russia[J]. Gyroscopy and Navigation,2011,2(2) :99-110.
  • 6SHERRAH J., RISTIC B, REDDING N J. Particle filter to track multiple people for visual surveillance [J]. Gyroscopy and Navigation, 2011,5 (4) : 99-200.
  • 7XU KUN, GUO Lanying. An anti-occlusion object tracking al- gorithm based on mean shift and particle filter [J]. ICIC Ex- press Letters, Part B: Applications,2011,2( 1 ) :95-100.
  • 8AGUSTIENS I, RAHMAT W M, BASARUDDIN T.Particle filter with Gaussian weighting for human tracking [J]. Telkomnika, 2012,10(6) : 1453-1457.
  • 9BALCELLS C M, DAVID D, DANIEL D.An appearance based approach for human and object tracking [C]//Proc. the IEEE In- ternational Conference on Image Processing.[S.1.]: IEEE Press, 2003 : 85-88.
  • 10ZHANG Yang, LIU Weiming. Diverse gentle adaboostwith cost-sensitive SVM ensemble classifiers algorithm forreal-time pedestrian tracking based on machinevision[J].International Journal of Digital Content Technology and Its Applications, 2014,8(1A) :222-225.

引证文献6

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部