期刊文献+

基于CARR-EVT整体方法的动态日VaR和CVaR模型研究 被引量:18

Modeling Daily VaR and CVaR by Integrating CARR and EVT Models
原文传递
导出
摘要 本文同时使用日VaR和CVaR模型可实现对市场风险的双重监控,其估计一直是风险管理的重点。科技的发展使获得高频数据成为可能,由于其包含丰富波动信息,学者们开始利用它来研究日VaR和CVaR的估计问题。本文通过整合基于高频数据的CARR模型和非参数的极值理论EVT,实现对日VaR和CVaR的动态估计。上证和深圳综指的实证结果表明,与基于日度数据GARCH类模型和未与极值理论整合的CARR模型的VaR和CVaR相比,本文方法极大提高了估计的准确性,同时所得估计具有不受新息分布影响的稳健性。 Using daily VaR and CVaR simultaneously can doubly control mar ket risks. Their estimations are the key point of risk management. The rapid devel opment of science and technology makes it possible to obtain high frequent data. Because they have much information about volatility, scholars begin to study daily VaR and CVaR based on high frequent data. In the paper, we are to estimate daily VaR and CVaR by integrating the CARR model and extreme value theory. The em pirical analysis on Shanghai and Shenzhen composite indexes showes that, com pared with type of GARCH models based on daily data and CARR model not in tegrating extreme value theory, our method remarkably improves the accuracy of VaR and CVaR estimators. Moreover, the two estimators are robust to the distribu tion of new information.
出处 《数量经济技术经济研究》 CSSCI 北大核心 2012年第11期130-148,共19页 Journal of Quantitative & Technological Economics
基金 教育部人文社会科学研究青年基金(10YJC790396 12YJC630161) 山东省自然科学基金青年项目(ZR2010GQ008) 中国海洋大学青年教师科研专项基金项目(82421119)的资助
关键词 日VaR CVAR CARR模型 极值理论 Daily VaR CVaR CARR Model Extreme Value Theory
  • 相关文献

参考文献20

  • 1Alizadeh S. , Brandt M. , Diebold F. , Range-based Estimation of Stochastic Volatility Models [J], Journal of Finance, 2002, 57, 1047-1092.
  • 2Brandt M. W. , Diebold F. X. , A No-arbitrage Approach to Range-based Estimation of Return Co- variances and Correlations [J], Journal of Business, 2006, 79, 61-74.
  • 3Christensen K. , Podolskij M. , Asymptotic Theory for Range-based Estimation of Integrated Va- riance of a Continuous Semi-martingale [R], Aarhus School of Business, 2005.
  • 4Chou R. , Forecasting Financial Volatilities with Extreme Values - The Conditional Auto Regres- sive Range (CARR) Model [J], Journal of Money Credit and Banking, 2005, 37, 5614582.
  • 5Chou R. Y. and Liu N. , The Economic Value of Volatility Timing Using Arrange-based Volatili- ty Model [J], Journal of Economic Dynamics and Control, 2010, 34, 228842301.
  • 6Ding Z. , Granger C. W. J. , Engle R. F. , A Long Memory Property of Stock Market Returns and A NewModel [J]. Journal o- Empirical Finance, 1993, 1, 83-106.
  • 7Engle R. , Manganelli S. , CAViaR= Conditional Autoregressive Value at Risk by Regression Quan- tiles [J], Journal of Business and Economics Statistics, 2004, 22, 367-381.
  • 8Fleming J. , Kirby C. and Ostdiek B. , The Economic Value of Volatility Timing Using "realized" Volatility [J]. Journal of Financial Economics, 2003, 67, 473-509.
  • 9Giot P. , Laurent S. , Value-at-Risk for Long and Short Positions [J]. Journal of Applied Econo- metrics, 2003, 18, 6-1-664.
  • 10Giot P. , Laurent S. , Modelling Daily Value-at-Risk Using Realized Volatility and ARCH type Models [J].Journal of Empirical Finance, 2004, 11, 379-398.

二级参考文献12

  • 1余素红,张世英,宋军.基于GARCH模型和SV模型的VaR比较[J].管理科学学报,2004,7(5):61-66. 被引量:76
  • 2罗付岩,唐邵玲.基于fattailed-garch的VaR模型[J].系统工程,2005,23(11):29-33. 被引量:4
  • 3李伟,屠新曙.长记忆条件下中国股市VaR的估计[J].上海管理科学,2006,28(2):69-73. 被引量:2
  • 4Anderson T.G.Tim Bollerslev.Exchange rate returns standardized by realized volatility are nearly Gaussian[J].Multinational Finance Journal,2000,(4):159~179.
  • 5Anderson T.G.Tim Bollerslev.The distribution of exchange rate volatility[J].Journal of American Statistical Association,2001,(96):42~55.
  • 6Anderson T.G.Tim Bollerslev.The distribution of stock return volatility[J].Journal of Financial Economics,2001,(61):43~76.
  • 7Anderson T.G.Tim Bollerslev.Modelling and forecasting realized volatility[J].Econometrica,2003,71(2):579~625.
  • 8Andersen T G, Bollerslev T, Diebold F X, Parametric and nonparametric volatility measurement,Working Paper ,2002.
  • 9Pierre Giot, Sebastien Laurent, Modelling daily Value-at-Risk using realized volatlity and ARCH type models [J].Journal of Empirical Finance, 11 (2004), 379-- 398.
  • 10Kupiec P H, Techniques for vetrifying the accuracy of measurement models[J].Journal of Derivatives, 3(1995),73--80.

共引文献3

同被引文献166

引证文献18

二级引证文献37

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部