期刊文献+

无向正权网络最短路模型的建立和理论分析 被引量:1

Founding a model of the shortest path in undirected network with positive weight and analyzing it in theory
原文传递
导出
摘要 路径问题是运筹学的重要分支,更是图论学科成立的奠基问题.针对无向网络中的路径问题,首先,建立了无向正权网络最短路模型,提出一些能够反映无向网络中节点、边和路线规律性的参数概念,包括点参数和边参数,用这些参数代替边的权数描述无向正权网络;其次,通过对模型进行理论分析,推导出与各参数相关的结论,利用参数揭示了点、边、路线以及无向正权网络之间的关系,并初步体现了该模型的用途;第三,利用该模型求解了与无向正权网络相关的几类基本路径问题;最后,通过应用举例,阐述了该模型的部分应用.需注意的是,该模型也适用于带回路的有向正权网络. The path problem is an important branch of operations research, and it is even more the foundation problem of founding graph theory subject. Aiming at the path problem in undirected network, firstly, a model of the shortest path in undirected network with positive weight was founded, several con- ceptions of parameters contain node parameters and edge parameters were proposed which could represent regulation of node, edge and path in undirected network, and undirected network was described by these parameters instead of edge weight; secondly, by analyzing the model in theory~ conclusions relevant to these parameters were deduced, relations among node, edge, path and undirected network were revealed by using these parameters, and function of the model was realized in a certain extent; thirdly, several basic path problems which related to undirected network with positive weight were solved by using the model; and finally, partial application of the model was validated by illustrating. It should be noticed that this model is also applicable to directed network with positive weight and loop.
出处 《系统工程理论与实践》 EI CSSCI CSCD 北大核心 2012年第10期2221-2228,共8页 Systems Engineering-Theory & Practice
基金 国家自然科学基金(70671040) 华北电力大学博士研究生创新资助项目
关键词 运筹学 最短路模型 无向正权网络 点参数 边参数 operations research the shortest path model undirected network with positive weight nodeparameter edge parameter
  • 相关文献

参考文献20

  • 1韩丽霞,王宇平.解旅行商问题的一个新的遗传算法[J].系统工程理论与实践,2007,27(12):145-150. 被引量:12
  • 2Jolai F, Ghanbari A. Integrating data transformation techniques with Hopfield neural networks for solving trav- elling salesman problem[J]. Expert Systems with Applications, 2010, 3?(?): 5331-5335.
  • 3Fatih Tasgetiren M, Suganthan P N, Pan Q K. An ensemble of discrete differential evolution algorithms for solving the generalized traveling salesman problem[J]. Applied Mathematics and Computation, 2010, 215(9): 3356-3368.
  • 4Duchenne E, Laporte G, Semet F. The undirected m-peripatetic salesman problem: Polyhedral results and new algorithms[J]. Operations Research, 2007, 55(5): 949 965.
  • 5高尚.解旅行商问题的混沌蚁群算法[J].系统工程理论与实践,2005,25(9):100-104. 被引量:44
  • 6韩伟一,王铮.负权最短路问题的新算法[J].运筹学学报,2007,11(1):111-120. 被引量:13
  • 7Ibrahim M S, Maculan N, Minoux M. A strong flow-based formulation for the shortest path problem in digraphs with negative cycles[J]. International Transactions in Operational Research, 2009, 16(3): 361-369.
  • 8郑龙,周经伦,易凡,陈玉教.大规模随机运输网络的路径优化[J].系统工程理论与实践,2009,29(10):85-93. 被引量:6
  • 9Peer S K, Sharma D K. Finding the shortest path in stochastic networks[J]. Computers & Mathematics with Applications, 2007, 53(5): 729-740.
  • 10Lin Y K. Time version of the shortest path problem in a stochastic-flow network[J]. Journal of and Applied Mathematics, 2009, 228(1): 150- 157.

二级参考文献121

共引文献122

同被引文献6

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部