期刊文献+

基于群集理论的高阶对称结构可动性判定 被引量:2

Mobility of highly symmetric structures based on group theory
下载PDF
导出
摘要 基于群集理论,对由转动副及刚性连杆单元构成的高阶对称过约束体系进行了可动性分析。由于该类结构不同于铰接杆系结构,且自应力模数较高,很难用常规可动性判定方法来研究结构的几何稳定性。本文首先从单根单元的广义力平衡方程出发,建立了整体结构的平衡矩阵及位移协调矩阵,并从其零空间分别得到了机构位移模数及自应力模数。随后,根据对称群的不可约子空间及特征标,得到了位移模数及自应力模数的对称表示,从而根据二者的对称属性判定结构的可动性。算例结果表明,本文所述方法合理可行,且讨论的三个高阶对称结构皆被证明是单自由度可动的。 Based on the group theory,a novel method for determining the mobility of highly symmetric over-constrained assemblies is proposed.Different from the pin-jointed assemblies,these structures consist of revolving joints and rigid links,and have many modes of self-stresses.Thus,it is difficult to investigate their geometric stabilities using the conventional criteria for the mobility.By the equilibrium equation about the internal forces and external loads of each element,this study gives the equilibrium matrix and the compatibility matrix for these structures.The modes of mechanism displacement and self-stresses are obtained from the null-spaces of the matrices.Using the subspaces of irreducible representations and the characters from a symmetry group,the symmetry adapted modes of mechanisms and self-stresses could be accordingly expressed,and they will reveal the mobility.Some typical examples based on the geometries of polyhedra are discussed.It could be concluded that the proposed technique is convenient and feasible,and each of the illustrative structures has a single degree of freedom and is validated to be foldable.
出处 《计算力学学报》 EI CAS CSCD 北大核心 2012年第5期668-674,共7页 Chinese Journal of Computational Mechanics
基金 江苏省"六大人才高峰"(2007162) 东南大学优秀博士学位论文基金(YBJJ1025)资助项目
关键词 转动副 可动性判定 对称 平衡矩阵 群集理论 revolving joint criteria for mobility symmetric structure equilibrium matrix group theory
  • 相关文献

参考文献14

  • 1Calladine C R, Pellegrino S. First-order infinitesimal mechanisms [J]. International Journal of Solids and Structures, 1991(27) : 505-515.
  • 2罗尧治,陆金钰.杆系结构可动性判定准则[J].工程力学,2006,23(11):70-75. 被引量:10
  • 3Wei G W, Ding X L, Dai J S. Mobility and geometric analysis of the hoberman switch-pitch ball and its va- riant [J ]. Journal of Mechanisms and Robotics ( Transactions of the ASME), 2010,2 (3), 031010 ( 9 pages).
  • 4Ding X L,Yang Y,Dai J S. Topology and kinematic artalysis of color-changing ball [J]. Mechanism and Machine Theory ,2011,46(1) :67-81.
  • 5钟万勰,裘春航,程耿东.群论在结构分析中的应用[J].力学学报,1978,4:251-267.
  • 6Zlokovic A G. Group Theory and G-vector Spaces in Structural Analysis, Vibration, Stability and Statics [M]. Chichester: EllisHorwood, 1989.
  • 7Kaveh A, Nikbakht M. Decomposition of symmetric mass-spring vibrating systems using groups, graphs and linear algebra [J]. Communications in Numerical Methods in Engineering ,2007,23(7) :639-719.
  • 8Zingoni A. Group-theoretic exploitations of symmetry in computational solid and structural mechanics[J]. International Journal for Numerical Methods in Engineering, 2009 (79) : 253-289.
  • 9Pandia Raj P,Guest S D. Using symmetry for tenseg- rity form-finding[J]. Journal of the International Association for Shell and Spatial Structures :lASS, ?.006,47(3) ,December m 152.
  • 10Altmann S L, Hertzig P. Point-group Theory Tables [M]. Oxford: Oxford University Press, 1994.

二级参考文献10

  • 1Maxwell J C.On the calculation of the equilibrium and stiffness of frames[C].England:University of Cambridge Press,1890.
  • 2Calladine C R.Buckminster fuller's "tensegrity" structures and clerk Maxwell's rules for the construction of stiff frames[J].Int.J.Solids Structures,1978,14:161~172.
  • 3Pellegrino S.Analysis of pre-stressed mechanisms[J].Int.J.Solids Structures,1990,26(12):1329~1350.
  • 4Pellegrino S.Structure computations with the singular value decomposition of the equilibrium matrix[J].Int.J.Solids Structures,1993,30(21):3025~3035.
  • 5Pellegrino S,Calladine C R.Matrix analysis of statically and kinematically indeterminate frameworks[J].Int.J.Solids Structures,1986,22(4):409~428.
  • 6Kuznetsov E N.Underconstrained structural systems[J].Int.J.Solids Structures,1988,24(2):153~163.
  • 7Tarnai T,Szabó J.On the exact equation of inextensional,kinematically indeterminate assemblies[J].Computers and Structures,2000,75:145~155.
  • 8Tarnai T.Zero stiffness elastic structures[J].International Journal of Mechanical Sciences,2003,45:425~431.
  • 9罗尧治.索杆张力结构几何稳定性分析[J].浙江大学学报(理学版),2000,27(6):608-611. 被引量:15
  • 10罗尧治,董石麟.含可动机构的杆系结构非线性力法分析[J].固体力学学报,2002,23(3):288-294. 被引量:13

共引文献10

同被引文献29

  • 1陈耀,冯健,马瑞君.对称型动不定杆系结构的可动性判定准则[J].建筑结构学报,2015,36(6):101-107. 被引量:2
  • 2钟万勰,裘春航,程耿东.群论在结构分析中的应用[J].力学学报,1978,4:251-267.
  • 3Crawford R F, Hedgepeth J M, Preiswerk P R. Spoked wheels to deploy large surfaces in space: weight estimates for solar arrays [ R ]. NASA CR-2347.
  • 4Washington DC, USA: National Aeronautics and Space Administration, 1975: 15-32.
  • 5Zhao J, Chu F, Feng Z. The mechanism theory and application of deployable structures based on SLE [ J ]. Mechanism and Machine Theory, 2009, 44 ( 2 ) : 324- 335.
  • 6Hoberman C. Reversibly expandable doubly-curved truss structure: USA, 4942700[ P]. 1990-07-24.
  • 7Cheruiavsky A G, Gulyayev V I, Gaidaichuk V V, et al. Large deployable space antennas based on usage of polygonal pantograph [ J ]. Journal of Aerospace Engineering, 2005, 18(3): 139-145.
  • 8Akgun Y, Gantes C J, Sobek W, et al. A novel adaptive spatial scissor-hinge structural mechanism for convertible roofs[J]. Engineering Structures, 2011,33 (4) : 1365-1376.
  • 9Buhl T, Jensen F V, Pellegrino S. Shape optimization of cover plates for retractable roof structures [ J ]. Computers & Structures, 2004, 82 (15/16) : 1227- 1236.
  • 10Bennett G T. A new mechanism [ J ]. Engineering, 1903, 76(777) : 2.

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部