期刊文献+

通过网格改进的基于指标的进化算法

Improved indicator-based evolutionary algorithm based on grid
下载PDF
导出
摘要 设计一种高效的演化多目标优化算法,使其能获得一组同时具有优异的收敛性和多样性的解集是一项很困难的任务。为了能高效求解多目标优化问题,在基于指标的进化算法(IBEA)的基础上:1)引入基于目标空间网格的多样性保持策略,保证算法近似前沿具有优异的分布性;2)引入反向学习机制,同时评估当前解和当前解的反向解,期望能找到一组较优的解从而加快算法收敛。通过6个标准测试函数对改进算法进行测试,其结果表明改进算法可以有效逼近真实Pareto前沿并且分布均匀。 Evolutionary Multi-Objective Optimization(EMO) has become a very popular topic in the last few years.However,designing an efficient EMO algorithm for finding well-converged and well-distributed approximate optimal set is a challenging task.In this paper,an improved IBEA algorithm was proposed to solve Multi-objective Optimization Problems(MOPs) efficiently.The proposed approach introduced a diversity promotion mechanism based on grid in objective space to ensure the approximate optimal set has good distribution.To make the algorithm converge faster,the new approach employed opposition-based learning mechanism to evaluate the current solutions and their opposite solutions simultaneously in order to find a group of better solutions.The experiments on six benchmark problems show that the new approach is able to obtain a set of well-distributed solutions approximating the true Pareto-front.
出处 《计算机应用》 CSCD 北大核心 2012年第11期2985-2988,共4页 journal of Computer Applications
基金 国家自然科学基金资助项目(60873107) 湖北省自然科学基金资助项目(2011CDB348)
关键词 多目标优化 基于指标的进化算法 网格 反向学习 multi-objective optimization Indicator-Based Evolutionary Algorithm(IBEA) grid opposition-based learning
  • 相关文献

参考文献15

  • 1BOSMAN P A N, THIERENS D. Multi-objective optimization with diversity preserving mixture-based iterated density estimation evolutionary algorithms[ J]. International Journal of Approximate Reasoning, 2002, 31(3), 259-289.
  • 2FONSECA C M, FLEMING P J. Genetic algorithms for muhiobjecrive optimization: formulation, discussion and generalization [ C ]// Proceedings of the Fifth International Conference on Genetic Algorithms. San Mateo: Morgan Kaufmann Publishers Inc, 1993:416 - 423.
  • 3SRINIVAS N, DEB K. Multiobjective optimization using nondominated sorting in genetic algorithms[J]. Evolutionary Computation, 1994, 2(3): 221-248.
  • 4DEB K, PRATAP A, AGARWAL S, et al. A fast and elitist multiobjective genetic algorithm: NSGA-Ⅱ [J]. IEEE Transactions on Evolutionary Computation, 2002, 6(2):182-197.
  • 5KNOWLES J, CORNED W. Lbcal search, muhiobjective optimization and the Pareto achieved evolutionary strategy[ C]//Proceedings of the Third Australia-Japan Joint Workshop on Intelligent and Evolutionary Systems. New South Wales: University of New South Wales and Ashikaga Institute of Technology, 1999:209 -216.
  • 6ZITZLER E, THIELE L. Multiobjective evolutionary algorithms: A comparative case study and the strength Pareto approach[ J]. IEEE Transactions on Evolutionary Computation, 1999, 3 (4) : 257 -271.
  • 7ZITZLER E, LAUMANNS M, THIELE L. SPEA2: Improving the strength Pareto evolutionary algorithm for muhiobjective optimization [ EB/OL]. [ 2012 - 03 - 22]. http://www. kddresearch. org/Courses/Spring-2007/CIS830/Handouts/P8. pdf.
  • 8CORNED W, KNOWLES J D, OATES M J. The Pareto envelopebased selection algorithm for muhiobjective optimization[ C]// Proceedings of the Parallel Problem Solving from Nature Ⅵ Conference. Berlin: Springer, 2000:839 - 848.
  • 9COELLO COELLO C A, PULIDO G T. A micro-genetic algorithm for muhiobjeetive optimization [ C]// EMO'01 Proceedings of the First International Conference on Evolutionary Multi-Criterion Optimization. New York: ACM, 2001:126 -140.
  • 10公茂果,焦李成,杨咚咚,马文萍.进化多目标优化算法研究[J].软件学报,2009,20(2):271-289. 被引量:402

二级参考文献2

共引文献401

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部