期刊文献+

广义量词的各种单调性之间的关系 被引量:6

下载PDF
导出
摘要 广义量词理论在集合论的基础上得到发展,提升了一阶逻辑处理现实世界的能力,有助于计算机更好地处理自然语言。单调性是广义量词最为重要的语义性质。1类型广义量词的单调性与其亲缘量词的单调性之间具有可转换关系,同一个1,1类型广义量词的不同单调性之间也具有可转换关系,这些转换关系可以用数字三角形简图进行直观验证。
作者 张晓君
机构地区 厦门大学哲学系
出处 《安徽大学学报(哲学社会科学版)》 CSSCI 北大核心 2012年第5期47-52,共6页 Journal of Anhui University(Philosophy and Social Sciences Edition)
基金 教育部人文社科研究规划基金项目(12YJA72040001)
  • 相关文献

参考文献16

  • 1张晓君,郝一江.广义量词的单调性与数字三角形[J].重庆理工大学学报(社会科学),2010,24(3):18-24. 被引量:9
  • 2S. Peters, D. Westerstihl, Quanters in Languageand Logic, Oxford: Claredon Press, 2006, pp. 171 - 191.
  • 3J. van Benthem, "Questions about Quantifiers", Journal of Symbolic Logic, vol. 49, 1984:443 -466.
  • 4J. Vlananen, "Unary Quantifiers on Finite Models", Journal of Logic, Language and Information, vol. 6, 1997, pp. 275 - 304.
  • 5S. Peters, D. Westerstihl, Quantifiers in Language and Logic, p. 165.
  • 6D. M. Gabbay, M. A. Reynolds, M. Finger, Temporal Logic --Mathematical Foundation and Computational Aspects, Oxford : Clarendon Press, 2000, pp. 229 - 272.
  • 7A. Pietarinen, Signs of Logi c, Dordrecht : Springer,2006, pp. 182 - 186.
  • 8J. van Benthem, Essays in Logical Semantics, D. Reidel Pub. Co. ,1986.
  • 9J.M. Gawron, "Quantit]cation, Quantificational Domains and Dynamic Logic , The Handbool o.1 Contemporary 3emanttc I neory, Blackwell:Blackwell Publishing, 1997, pp. 171 -188.
  • 10S. Peters, D. Westersthl, Quantifiers in Language and Logic, Oxford: Claredon Press, 2006, pp. 178 - 179.

二级参考文献8

  • 1J. Kontinen, Zero-One Law and Rational Quantigiers, staff, science, uva. nl/- katrenko/stus06/images/kontinen. pdf, pp. 1-12.
  • 2L.T.F. Gamut, Intensional Logic and Logical Grammar, University of Chicago Press, 1991, pp. 222-245.
  • 3S. Peters & D. Westerstahl, Quantifiers in language and logic, Claredon Press Oxford, 2006, p. 96 ; p. 160; pp. 163-185; p. 176; p. 176; p. 177.
  • 4M. Kanazawa, Dynamic Generalized Quantifiers and Monotonicity, Stanford University, http://www, inc. uva. nl/Publications/dgq, pdf, 1993, pp. 1-37.
  • 5K. Jaszczlot, Quantified Expressions, University of Cambridge, http://www, mml. cam. ac. uk/ling/courses/ ugrad/p_5, html, 2007/2008, pp. i-vi.
  • 6P. Saint-Dizier, Default Logic, Natural Language and Generalized Quantifiers, 1RISA-INRIA, http ://www. aclweb, org/antholgy-new/c/c88/c88-2117, pdf, 1988, pp. 555-561.
  • 7E. Ruys & Y. Winter, "Background on Generalized Quantifier Theory", 3 Oct. 2008 http ://www. cs. tech- nion. ac. il/ - winter/course/synsem, html, 1997, pp. 1-11.
  • 8R. Zuber. Symmetric and contrapositional quantifiers[J] 2007,Journal of Logic, Language and Information(1):1~13

共引文献14

同被引文献36

  • 1张晓君,郝一江.广义量词的单调性与数字三角形[J].重庆理工大学学报:社会科学,2010(3):18-24.
  • 2MOSTOWSKI A.On a Generalization of Quantifiers[J].Fund Math,1957,44:12-36.
  • 3BARWISE J,COOPER R.Generalized Quantifiers and Natural Language[J].Linguistics and Philosophy,1981,(2):159-219.
  • 4KEENAN E L.The Semantics of Determiners[C]//The Handbook of Contemporary Semantic Theory.Blackwell Publishing,1997.
  • 5VAN EIJCK J.Syllogistics=Monotonicity+Symmetry+Existential Import[EB/OL].[2012-06-18].http://www.oai.cwi.nl/oai/asset/10940/10940D.pdf.2005.
  • 6PETERS S,WESTERSTHI D.Quantifiers in Language and Logic[M].Oxford:Claredon Press,2006.
  • 7SZYMANIK J.Quantifiers in Time and Space[M].Polen:Geboren te Warschau,2009.
  • 8Chow K F.Inferential Patterns of Generalized Quantifiers and their Applications to Scalar Reasoning[D].Hong Kong Polytechnic University,2012.
  • 9张晓君.广义量词的语义性质研究[D].北京:中国社会科学院,2011.
  • 10PARSONS T.The Traditional Square of Opposition[EB/OL].[2012-06-18].http://plato.stanford.edu/archives/sum 2004/entries/square/,2004.

引证文献6

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部