期刊文献+

Target classification using SIFT sequence scale invariants 被引量:5

Target classification using SIFT sequence scale invariants
下载PDF
导出
摘要 On the basis of scale invariant feature transform(SIFT) descriptors,a novel kind of local invariants based on SIFT sequence scale(SIFT-SS) is proposed and applied to target classification.First of all,the merits of using an SIFT algorithm for target classification are discussed.Secondly,the scales of SIFT descriptors are sorted by descending as SIFT-SS,which is sent to a support vector machine(SVM) with radial based function(RBF) kernel in order to train SVM classifier,which will be used for achieving target classification.Experimental results indicate that the SIFT-SS algorithm is efficient for target classification and can obtain a higher recognition rate than affine moment invariants(AMI) and multi-scale auto-convolution(MSA) in some complex situations,such as the situation with the existence of noises and occlusions.Moreover,the computational time of SIFT-SS is shorter than MSA and longer than AMI. On the basis of scale invariant feature transform(SIFT) descriptors,a novel kind of local invariants based on SIFT sequence scale(SIFT-SS) is proposed and applied to target classification.First of all,the merits of using an SIFT algorithm for target classification are discussed.Secondly,the scales of SIFT descriptors are sorted by descending as SIFT-SS,which is sent to a support vector machine(SVM) with radial based function(RBF) kernel in order to train SVM classifier,which will be used for achieving target classification.Experimental results indicate that the SIFT-SS algorithm is efficient for target classification and can obtain a higher recognition rate than affine moment invariants(AMI) and multi-scale auto-convolution(MSA) in some complex situations,such as the situation with the existence of noises and occlusions.Moreover,the computational time of SIFT-SS is shorter than MSA and longer than AMI.
出处 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2012年第5期633-639,共7页 系统工程与电子技术(英文版)
基金 supported by the National High Technology Research and Development Program (863 Program) (2010AA7080302)
关键词 target classification scale invariant feature transform descriptors sequence scale support vector machine target classification scale invariant feature transform descriptors sequence scale support vector machine
  • 相关文献

参考文献8

二级参考文献68

共引文献66

同被引文献48

  • 1段瑞玲,李庆祥,李玉和.图像边缘检测方法研究综述[J].光学技术,2005,31(3):415-419. 被引量:373
  • 2ZHANG Hongying, ZHANG Jiawan, SUN Jizhou, et al. Non-rigid image registration algorithm based on b-spline approximation [ J ]. Transaction of Tianjin University, 2007,13(6) :447 -451.
  • 3Lowe, D G. Distinctive image features from scale-invariant interest points [ J ]. International Journal of Computer Vi- sion,2004,60(2) :91 - 100.
  • 4Van de Sande K E A,Gevers T,Snoek C G M. Evaluating colordescriptors for object and scene recognition[J]. IEEE Trans . onPattern Analysis and Machine Intelligence ,2010,32(9) : 1582 一 1596.
  • 5Li L J. Su H, Lim Y,et al. Objects as attributes for scene clas-sification[Mj // Kutulakos K N. Trends and topics in computervision . Berlin Heidelberg : Springer, 2012 : 57 - 69.
  • 6Cheriyadat A M. Unsupervised feature learning for aerial scene das-sification[J]. IEEE Trans . on Geoscience and Remote Sensing, 2014,52(1): 439 - 451.
  • 7Nanni L,Lumini A. Heterogeneous bag-of-features for object/scene recognition[J j. Applied Soft Computing , 2013, 13(4):2171-2178.
  • 8Qian X M, Guo D P,Hou X S, et al. HWVP: hierarchical waveletpacket descriptors and their applications in scene categorization andsemantic concept retrieval[J]. Multimedia Tools and Applications,2014, 69(3): 897 - 920.
  • 9Ryu H,Chung W K. Scene recognition with omnidirectional im-ages in low-textured environments[J]. Electronics Letters ,2014,50(5): 368 - 369.
  • 10Yu J, Tao D C,Rui Y,et al. Pairwise constraints based multiviewfeatures fusion for scene classification[ J J. Pattern Recognition, 2013.46(2): 483 -496.

引证文献5

二级引证文献35

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部