期刊文献+

基于生物启发C2特征的在线目标跟踪算法

Online Object Tracking Algorithm Based on Biologically-Inspired C2 Feature
下载PDF
导出
摘要 现有的在线跟踪算法在应对目标复杂形变时易出现跟踪偏差.文中通过寻找鲁棒的特征去刻画目标外观来解决这一问题,即模拟人眼视皮层腹侧通路感知机制,引入具有位置尺度不变性、复杂形状选择特性的C2特征,建立一个基于认知碎片集进行C2特征识别的在线目标跟踪模型,并根据认知碎片在目标识别中所起的作用对其重要性进行评估,依据评估结果实现认知碎片的在线淘汰与更新,同时引入在线目标/背景分类器,对新加入认知碎片记忆池的碎片进行筛选,解决了跟踪到的目标区域中的背景部分参与模型更新可能造成的误差累积问题.仿真实验结果表明:该算法在应对目标复杂形变和严重遮挡时,具有一定的鲁棒性与有效性. In the existing online object tracking algorithms, tracking deviation commonly occurs when there exists a complex deformation of object appearance. In order to solve this problem, this paper employs robust features to de- scribe the object appearance. First, the perception mechanism of the ventral pathway of human visual cortex is imi- tated, and C2 feature, which is invariant to position and scale and can distinguish complex shapes, is introduced. Then, a novel online object-tracking model based on a cognitive patch set is put forward to recognize C2 feature. In this model, the importance of a cognitive patch is estimated according to its role in the object recognition, and based on the estimated results, online elimination and update of cognitive patches are realized. Meanwhile, an on- line object/background classifier is adopted to distinguish new candidate patches, thus solving the problem of the error accumulation resulting from the participation of the background part of the object region in the model adjust- ment. Simulated results indicate that the proposed method is robust and effective in the presence of complex object deformation and severe occlusion.
出处 《华南理工大学学报(自然科学版)》 EI CAS CSCD 北大核心 2012年第8期63-68,75,共7页 Journal of South China University of Technology(Natural Science Edition)
基金 国家自然科学基金资助项目(61171142) 广东省重大科技专项(2011A010801005 2010A080402015)
关键词 生物启发特征 C2特征 在线目标跟踪 认知碎片 biologically-inspired feature C2 feature online object tracking cognitive patch
  • 相关文献

参考文献12

  • 1Levy A,Lindenbaum M. Sequential Karhunen-Loeve basis extraction and its application to images [J]. IEEE Transaction on Image Processing,2000,9(8) : 1371-1374.
  • 2Ross D A, Lim J, Lin R S, et al. Incremental learning for robust visual tracking [J].International Journal of Computer Vision,2008,77 ( 1 ) : 125-141.
  • 3Wang Q,Chen F,Xu W L. Tracking by third-order tensor representation [J]. IEEE Transaction on Systems,Man, and Cybernetics, Part B : Cybernetics ,2011,41 ( 2 ) :385- 396.
  • 4Giese M A,Poggio T. Neural mechanisms for the recognition of biological movements [J]. Nature Reviews Neuroscienee ,2003,4 : 179-192.
  • 5Serre T,Wolf L,Poggio T. Object recognition with features inspired by visual cortex [ C] //IEEE Computer Society Conference on Computer Vision and Pattern Recognition. San Diego : IEEE ,2005:994-1000.
  • 6Daugman J G. Complete discrete 2-D Gabor transforms by neural networks for image analysis and compression [J]. IEEE Transactions on Acoustics,Speech,and Signal Processing, 1988,36 ( 7 ) : 1169-1179.
  • 7Song D,Tao D. Biologically inspired feature manifold for scene classification [ J ]. IEEE Transctions on Image Processing ,2010,19 ( 1 ) : 174-184.
  • 8Huang Y,Huang K,Tao D, et al. Enhanced biologically inspired model for object recognition [J]. IEEE Tran- saction on Systems, Man, and Cybernetics, Part B : Cyber- netics,2011,41 (6) : 1668-1679.
  • 9Mutch J,Lowe D G. Muhiclass object recognition with sparse,localized features [C] //IEEE Computer Society Conference on Computer Vision and Pattern Recogni- tion. New York : 1EEE,2006 : 11-18.
  • 10Wang P,Qiao H. Online appearance model learning and generation for adaptive visual tracking [ J]. IEEE Transactions on Circuits and Systems for Video Technology,2011,2 (2) : 156-169.

二级参考文献9

  • 1莫以为,萧德云.基于进化粒子滤波器的混合系统故障诊断[J].控制与决策,2004,19(6):611-615. 被引量:23
  • 2Julier S J,Uhlmann J K.A general method for approximating nonlinear transformations of probability distributions[R].Oxfird:Department of Engineering Science,University of Oxford,1996.
  • 3Gordon N,Salmond D J,Smith A F M.Novel approach to nonlinear and non-Gaussian Bayesian state estimation[J].IEE Proceedings-F,1993,140(2):107-113.
  • 4de Freitas J F G,Niranjan M,Gee A H,et al.Sequential Monte Carlo methods to train neural network models[J].Neural Computation,2000,12(4):955-993.
  • 5Van der Merwe R,de Freitas N,Doucet A,et al.The unscented particle filter[R].Cambridge:Department of Engineering,Cambridge University,2000.
  • 6Doucet A,Godsill S J,Andrieu C.On sequential Monte Carlo sampling methods for Bayesian filtering[J].Statistics and Computing,2000,10(3):197-208.
  • 7Yaakov Bar-shalom,Li Xiao-rong.Estimation and tracking:principles,techniques,and software[M].Boston:Artech House,1993.
  • 8周东华,席裕庚,张钟俊.一种带多重次优渐消因子的扩展卡尔曼滤波器[J].自动化学报,1991,17(6):689-695. 被引量:192
  • 9袁泽剑,郑南宁,贾新春.高斯-厄米特粒子滤波器[J].电子学报,2003,31(7):970-973. 被引量:77

共引文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部