期刊文献+

Identification of deregulated miRNAs and their targets in hepatitis B virus-associated hepatocellular carcinoma 被引量:20

Identification of deregulated miRNAs and their targets in hepatitis B virus-associated hepatocellular carcinoma
下载PDF
导出
摘要 AIM: To identify the differentially expressed miRNAs and their targets in hepatitis B virus (HBV)-associated hepatocellular carcinoma (HCC). METHODS: Six hundred and sixty seven human miRNAs were quantitatively analyzed by Taqman lowdensity miRNA array (TLDA) in HBV-HCC tissues. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses were used to analyze the significant function and pathway of the differentially expressed miRNAs in HBV-HCC. TargetScan software was used to predict the targets of deregulated miRNAs. Western blotting and luciferase assay were performed to verify the targets of these miRNAs.RESULTS: Ten up-regulated miRNAs (miR-217, miR518b, miR-517c, miR-520g, miR-519a, miR-522, miR518e, miR-525-3p, miR-512-3p, and miR-518a-3p) and 11 down-regulated miRNAs (miR-138, miR-214, miR-214#, miR-199a-5p, miR-433, miR-511, miR-592, miR-483-3p, miR-483-5p, miR-708 and miR-1275) were identified by Taqman miRNAs array and confirmed quantitatively by reverse transcription polymerase chain reaction in HCC and adjacent non-tumor tissues. GO and KEGG pathway analysis revealed that "regulation of actin cytoskeleton" and "pathway in cancer" are most likely to play critical roles in HCC tumorigenesis. MiR519a and ribosomal protein S6 kinase polypeptide 3 (RPS6KA3) were predicted as the most significant candidates by miRNA-mRNA network. In addition, cyclin D3 (CCND3) and clathrin heavy chain (CHC), usually up-regulated in HCC tissues, were validated as the direct target of miR-138 and miR-199a-5p, respectively. CONCLUSION: Our data suggest an importance of miR-138 and miR-199a-5p as well as their targets CCND3 and CHC in HCC tumorigenesis, and may provide more evidence for reliability of integrative bioinformatics analysis. AIM: TO identify the differentially expressed miRNAs and their targets in hepatitis B virus (HBV)-associated hepatocellular carcinoma (HCC). METHODS: Six hundred and sixty seven human miRNAs were quantitatively analyzed by Taqman lowdensity miRNA array (TLDA) in HBV-HCC tissues. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses were used to analyze the significant function and pathway of the differentially expressed miRNAs in HBV-HCC. TargetScan software was used to predict the targets of deregulated miRNAs. Western blotting and luciferase assay were performed to verify the targets of these miRNAs.RESULTS: Ten up-regulated miRNAs (miR-217, miR- 518b, miR-517c, miR-520g, miR-519a, miR-522, miR- 518e, miR-525-3p, miR-512-3p, and miR-518a-3p) and 11 down-regulated miRNAs (miR-138, miR-214, miR-214#, miR-199a-5p, miR-433, miR-511, miR-592, miR-483-3p, miR-483-5p, miR-708 and miR-1275) were identified by Taqman miRNAs array and confirmed quantitatively by reverse transcription polymerase chain reaction in HCC and adjacent non-tumor tissues. GO and KEGG pathway analysis revealed that "regulation of actin cytoskeleton" and "pathway in cancer" are most likely to play critical roles in HCC tumorigenesis. MiR- 519a and ribosomal protein S6 kinase polypeptide 3 (RPS6KA3) were predicted as the most significant can-didates by miRNA-mRNA network. In addition, cyclin D3 (CCND3) and clathrin heavy chain (CHC), usually up-regulated in HCC tissues, were validated as the di- rect target of miR-138 and miR-199a-5p, respectively.
出处 《World Journal of Gastroenterology》 SCIE CAS CSCD 2012年第38期5442-5453,共12页 世界胃肠病学杂志(英文版)
基金 Supported by The Key Programs of the Ministry of Science and Technology, No. 2012ZX10002009-004 Shanghai Leading Academic Discipline Project (B901) Science Fund for Creative Research Groups, NSFC, China, No. 30921006
关键词 MIRNAS 乙型肝炎病毒 放松管制 肝癌 肌动蛋白细胞骨架 WESTERN印迹法 TAQMAN探针 B型 Hepatocellular carcinoma miR-138 miR- 199a-5p Cyclin D3 Clathrin heavy chain Bioinformatics Taqman array
  • 相关文献

参考文献2

二级参考文献51

  • 1Pillai RS. MicroRNA function: multiple mechanisms for a tiny RNA? RNA 2005; 11:1753-1761.
  • 2Zamore PD, Haley B. Ribo-gnome: the big world of small RNAs. Science 2005; 309:1519-1524.
  • 3Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 2004; 116:281-297.
  • 4Fitzgerald K. RNAi versus small molecules: different mechanisms and specificities can lead to different outcomes. Curr Opin Drug Discov Dev 2005, 8:557-566.
  • 5Brennecke J, Stark A, Russell R.B, Cohen SM. Principles of microRNA-target recognition. PLoS Biol.2005; 3:e85.
  • 6Croce CM, Calin GA. miRNAs, cancer, and stem cell division. Cell 2005; 122:6-7.
  • 7Chen CZ, Li L, Lodish HF, Bartel DE MicroRNAs modulate hematopoietic lineage differentiation. Science 2004; 303:83- 86.
  • 8Hwang HW, Mendell JT. MicroRNAs in cell proliferation, cell death, and tumorigenesis. Br J Cancer 2006; 94:776-780.
  • 9Hammond SM. MicroRNAs as oncogenes. Curr Opin Genet Dev 2006; 16:4-9.
  • 10Esquela-Kerscher A, Slack FJ. Oncomirs - microRNAs with a role in cancer. Nat Rev Cancer 2006; 6:259-269.

共引文献207

同被引文献65

引证文献20

二级引证文献55

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部