期刊文献+

多特征联合的语音被动取证方法 被引量:1

A multi-feature approach to passive-blind speech forensics
下载PDF
导出
摘要 在分析篡改音频特征变化的基础上,提出了一种语音被动取证方法。采用语音的美尔倒谱域参数及其动态特征参数和小波域统计矩特征来建立模型,并选取支持向量机(SVM)作为分类器以寻找最优分类平面,实现对可疑语音信号真实性的盲取证。实验结果表明,该方法对语音片段的删除、剪接和替换等改变语音内容真实性的篡改操作能够达到较高的检测准确率。 A blind detection method for speech forensics is proposed based on hybrid domain spectral analysis. As forgeries lead to changes in dynamic property and high-order statistics, joint features in both mel-cepstrum and wavelet domain are adopted for classification. A SVM-based classifier is employed to find the optimal threshold for forgery detection. The validity of this scheme is evaluated under forgeries like deletion, splicing and substitution. Simulation results show that this method achieves promising accuracy for passive-blind speech forensics.
出处 《微型机与应用》 2012年第20期39-41,共3页 Microcomputer & Its Applications
基金 泉州市科技计划项目(2011G7) 中央高校基本科研业务专项基金(10QZR04)
关键词 语音取证 动态特征 统计矩 支持向量机 speech forensics dynamic features statistical moments support vector machine(SVM)
  • 相关文献

参考文献6

  • 1ZHU B B, SWANSON M D, TEWFIK A H. When seeing isn't believing[J]. IEEE Signal Processing Magazine, 2004, 21 (2):40-49.
  • 2DELP E, MEMON N, WU M. Digital forensics[J]. IEEE Signal Processing Magazine, 2009(3):14-15.
  • 3高阳,黄征,徐彻,施少培,杨旭.基于高阶频谱分析的音频篡改鉴定[J].信息安全与通信保密,2008,30(2):94-96. 被引量:8
  • 4GRIGORAS C. Digital audio recording analysis: the electric network frequency criterion[J]. The International Journal of Speech Language and the Law, 2005,12(!):63-76.
  • 5HUIJBREGTSE M, GERADTS Z. Using the ENF criterion for determining the time of recording of short digital audio recordings[J]. Computational Forensics, 2009,57(18): 116- 124.
  • 6姚秋明,柴佩琪,宣国荣,杨志强,施云庆.基于期望最大化算法的音频取证中的篡改检测[J].计算机应用,2006,26(11):2598-2601. 被引量:13

二级参考文献12

  • 1[1]Mendel J M.Tutorial on Higher-Order Statistics(Spectra) in Signal Processing and System Theory:Theoretical Results and Some Applications[J].Proceedings of the IEEE,1991,79:278~305.
  • 2[2]Nikias C L,Raghuveer M R.Bispectrum Estimation:A Digital Signal Processing Framework[J].Proc.IEEE,1987,75:869~891.
  • 3[3]Fackrell J W A,McLaughlin S.Detecting Nonlinearities in Speech Sounds Using the Bicoherence[Z].1996,Proceedings of the Institute of Acoustics,18(9):123~ 130.
  • 4[4]Farid H.Detecting Digital Forgeries Using Bispectral Analysis[R].1999,Technical Report,AIM-1657,MIT AI Memo.
  • 5ZHU BB, SWANSON MD, TEWFIK AH. When Seeing Isn't Believing[J]. IEEE Signal Processing Magazine, 2004, 21(2):40 -49.
  • 6SHAW G. Digital document integrity[ A]. Proceedings of the 2000 ACM workshops on Multimedia[ C]. Los Angeles, California, United States, 2000. 143 - 144.
  • 7POPESCU AC, FARID H. Exposing Digital Forgeries by Detecting Traces of Re-sampling[ J]. IEEE Transactions on Signal Processing,2005, 53(2) : 758 - 767.
  • 8POPESCU AC, FARID H. Exposing Digital Forgeries in Color Filter Array Interpolated Images[ J]. IEEE Transactions on Signal Processing, 2005,53(10) : 3948 -3959.
  • 9RABINER L, SCHAFER R. Digital Processing of Speech Signals[ M]. Prentice Hall, 1978.
  • 10BILMES JA. TR-97-021, A Gentle Tutorial of the EM Algorithm and its Application to Parameter Estimation for Gaussian Mixture and Hidden Markov Models[ D]. Department of EE & CS, U.C. Berkeley, 1998.

共引文献17

同被引文献17

引证文献1

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部