期刊文献+

超薄SiO_2层的化合态结构和厚度 被引量:2

Compound States Profile and Thickness of Ultra-thin Silicon Dioxide Film
原文传递
导出
摘要 用快速热处理对单面抛光硅片进行初始热氧化,800℃下在晶硅基表面制备出15,30和60 min三个时间段的超薄氧化硅层。采用角分辨X射线光电子谱(AR-XPS)技术分别分析了3种初始氧化硅层的厚度和化学组态。结果表明,这些氧化硅层的主要成分为SiO_2,在过渡区存在的Si_2O_3、SiO和Si_2O不饱和态的含量均小于5%。通过控制氧气的含量,使氧化厚度只与时间有关。氧化硅层主相SiO_2的厚度随时间改变分别为(4.1±0.4)nm,(6.2±0.6)nm和(9.6±0.5)nm。根据SiO_2与基底Si的Si_(2p)峰的间距随掠射角度的变化,推断出厚度为4.1和6.2 nm的SiO_2层内的固定正电荷导致n型Si基体能带向上弯曲;而9.6 nm的SiO_2层内的固定正电荷分布随着远离界面逐渐减小,表明固定正电荷主要分布在界面区附近。 By rapid thermal process, the initial thermal oxidation of single-side polished silicon wafer has been accurately obtained at 800℃ by oxygen switching for 15, 30 and 60 min oxidation time to form ultra thin silicon oxide layers. The ultra thin silicon oxidation layers were analyzed. The results show that the main composition of these layers is silicon dioxide, and the thicknesses are (4.1±0.4) nm, (6.2±0.6) nm and (9.6±0.5) nm, respectively. The incomplete oxides of Si2O3, SiO and Si2O all less than 5% of total oxidation layer formed at the interface between Si and SiO2. For those silicon oxide layers with the thickness of 4.1 and 6.2 nm, the difference of the binding energy between SiO2 and Si increases with decrease of graze angles, and the kinetic energy of photoelectron is affected by the build-in potential in the surface of the n-type silicon substrate. However, for the layers with 9.6 nm thick silicon oxide, the kinetic energy of photoelectron is dominated by the positive charge in the silicon oxide.
出处 《材料研究学报》 EI CAS CSCD 北大核心 2012年第5期461-466,共6页 Chinese Journal of Materials Research
基金 国家自然科学基金60876045 上海市基础研究重点项目09JC1405900 上海市重点学科建设基金S30105 SHUSOEN's PV联合实验室基金SS-E0700601资助项目~~
关键词 无机非金属材料 超薄氧化硅 角分辨XPS 快速热处理 固定表面正电荷 inorganic non-metallic materials, ultra-thin silicon oxide, angel-resoved XPS, rapidthermal process, fixed surface positive charge
  • 相关文献

参考文献19

  • 1Laegu Kang, Byoung Hun Lee, Wen-Jie Qi, Yongjoo Jeon, Nieh. R, Gopalan. S, Onishi. K, Lee. J.C, Electrical characteristics of highly reliable ultrathin hafnium oxide gate dielectric, IEEE Electron Device Letters, 21(4), 181(2000).
  • 2Jan Schmidt, Mark Kerr and Andres Cuevas, Surface passivation of silicon solar cells using plasma-enhanced chemical-vapour-deposited SiN films and thin thermal SiO2/pasma SiN stacks, Semicond. Sci. Technol., 16, 164(2001).
  • 3Wilson W. Wenas, Syarif Riyadi, Carrier transport in high-efficiency ZnO/SiO2/Si solar cells, Soler Energy Materials & Soalr Cells, 90, 3261(2006).
  • 4He Bo, Ma Zhongquan, Xu Jing, Zhao Lei, et.al, Realization and characterization of an ITO/AZO/SiO2/p-Si SIS heterojunction, Superlattices and Microstructures, 46, 664(2009).
  • 5L.Shen, H.W.Du, H.Ding, J.Tang, Z.Q.Ma, Regiondependent behavior of I-V characteristics in n-ZnO:Al/p-Si contacts, Materials Science in Semiconductor Processing, 13(5-6), 339(2011).
  • 6M.Uematsu, H.Kageshima, K.Shiraishi, Microscopic mechanism of thermal silicon oxide growth, Computational Materials Science, 24, 229(2002).
  • 7Romuald B. Beck, Formation of ultrathin silicon oxidesmodeling and technological constraints, Materals Science in Semiconductor Processing, 6, 49(2003).
  • 8H.Cui, C.X.Wang, G.W.Yang, D.Jiang, Origin of unusual rapid oxidation process for ultrathin oxidation of silicon, Applied Physics Letters, 93, 203113(2008).
  • 9L.Shen, Z.Q.Ma, C.Shen, F.Li, Bo.He, F.Xu, Studies on fabrication and characterization of a ZnO/p-Si-based solar cell, Superlattices and Microstructures, 48, 426(2011).
  • 10Min Hung Lee, Cheng-Ya Yu, Fon Yuan, K.F. Chen, Chang Chi Lai, and Chee Wee Liu, Reliability improvement of Rapid Thermal Oxide using gas switching, IEEE Transactions on Semiconductor Manufacturing, 16, 4(2003).

同被引文献19

  • 1黄宜平,C.A.Paz de Araujo.快速热工艺氧化法生长超薄SiO_2层的研究[J].Journal of Semiconductors,1989,10(4):294-300. 被引量:1
  • 2马强,杨德仁,马向阳,崔灿.快速热处理对直拉硅单晶在模拟CMOS热处理工艺时氧沉淀的影响[J].材料科学与工程学报,2006,24(5):691-693. 被引量:2
  • 3陈涛,席珍强,杨德仁,阙端麟.快速热氧化制备二氧化硅薄膜的红外研究[J].材料热处理学报,2007,28(1):5-8. 被引量:10
  • 4Armin G Aberle. Overview on SiN surface passivation ofcrystalline silicon solar cells[J]. Solar Energy Materials - Solar Cells, 2001, 65: 239-248.
  • 5Ioneseu M, Richards B, McIntosh K, et al. Hydrogen measurements in SiNx : H/Si thin films by ERDA[C]. 5th International Conference on Processing and Manufacturing of Advanced Materials, 2007, 539: 3551-3556.
  • 6J. Chen, E. Cornagliotti, X. Loozen, et al. Impact of firing on surface passivation of p-Si by SiOz/A1 and SiOz/SiNx/A1 stacks [J]. Journal of Applied Physics, 2011, 110:126101.
  • 7Peter Hacke, Kent Terwilliger, Ryan Smith, et al. Systemvoltage potential-induceddegradation mechanismsin PV modulesandmethodsfortest [ C ]. Photovoltaic Specialists Conference (PVSC), 37th IEEE, 2011, 6.
  • 8Hacke P, Smith R, Terwilliger K, et al. Testing and Analysis for Lifetime Prediction of Crystalline Silicon PV Modules Under going Degradation by System Voltage StressEJ']. IEEE Journal of Photovoltaics, 2013, 3(1): 246-253.
  • 9Schwark M, Berger K, Ebner R, et al. Investigationof potential induced degradation (PID) of solar modules from different manufacturers[C]. 39th Annual Conference of the IEEE Industrial- Electronics-Society (IECON), 2013, 11: 8090-8097.
  • 10L Fonseca, F Campabadal. Breakdown Characteristics of RTO 10 nm SiOz Films Grown at Different Temperatures[J]. IEEE Electron Device Letters, 1994, 15 : 11.

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部