期刊文献+

新型包覆数目可控的(CdTe/ZnS)_nSiO_2微球制备及细胞成像 被引量:1

Preparation of New Type SiO_2 Microsphere Containing Controllable Number of CdTe/ZnS and Its Application in Cell Imaging
下载PDF
导出
摘要 以水相中快速合成的高质量核壳型CdTe/ZnS量子点为核,通过两步Stber法首次制备了硅壳包覆CdTe/ZnS数目可控的量子点微球(CdTe/ZnS)nSiO2,并完成氨基功能化修饰。通过紫外-可见分光光谱、红外光谱、荧光分光光谱、透射电子显微镜、粒度分析等相关方法对产物进行表征。结果证实:该合成方法不仅简便省时,易于放大生产,而且制备的氨基化微球具有52.1%的高荧光量子产率、稳定性强、生物相容性好。进一步将其用于标记Raw 264.7小鼠单核巨噬细胞和MCF-7人乳腺癌细胞,通过特征性膜成像表现膜电荷的分布,显示其在膜电荷对细胞行为的影响研究方面具有广阔的前景。 (CdTe/ZnS)nSiO2 fluorescent microspheres were rapidly synthesis by a two-step Stober method for the first time. We used the high-quality aqueous CdTe/ZnS quantum dots which were in a core-shell structure as the cores, then we prepared the silicon dioxide microspheres containing controllable number of CdTe/ZnS quantum dots, and further completed amino-functional 'modification. To characterize the microspheres,we executed in different ways including UV-Vis spectra, infrared spectra, fluorescence spectra, transmission electron microscopy and particle size analysis.The results confirmed that the synthetic process was time-saving and easy to enlarge, the microspheres held a high fluorescence quantum yield of 52.1% and got advantages in stability and biocompatibility. For further study, we marked the Raw 264.7 murine monocyte-macrophage cells and MCF-7 human breast cancer cells with the as-prepared microspheres and specifically imaged the membrane through the distribution of negative charge. The type of fluorescence material shows good prospects in the study of the cell behavior which is affected by membrane charge.
出处 《无机化学学报》 SCIE CAS CSCD 北大核心 2012年第11期2321-2328,共8页 Chinese Journal of Inorganic Chemistry
基金 国家自然科学基金(No.81173023) 江苏省'六大人才高峰项目(No.FJ10120)' '先声药业研究生创新基金(No.02704053)'资助项目
关键词 (CdTe/ZnS)nSiO2 微球 量子产率 细胞成像 (CdTe/ZnS)nSiO2 microsphere quantum yield cell imaging
  • 相关文献

参考文献20

  • 1Qian J, Yong K T, Roy I, el al. J. Phxs Chem. B, 2007.1116969-6972.
  • 2Ashwin A B, Vyomesh P, Julie G, et al. A CS Nano, 2009,3: 307-316.
  • 3Arias A, Okuda T, Kawashima N, et al. A CS Nano, 2009,3: 2419-2429.
  • 4Liu G D, Lin Y Y, Wang J, et al. Anal. Chem, 2007,79: 7644-7653.
  • 5Aleksandra Z, Song D S, Qian W, et al. Colloids and SuoCaces B: Biointelfaces, 200%58:309-314.
  • 6WANGSu.Mei(王素梅),JIANGZhi.Li-nS(蒋治良),LIANGAi.Hui(梁爱惠),et al. Spectrosc. Spectr. Anal. (GtumgpuueYu Guangou Fnxi), 21108,28(9):2152-2155.
  • 7Lovric J, Bazzi H S, Cuie Y, et al. J. Mol. Med., 2005,83: 377-385.
  • 8Salugueirino-Maceira V, Correa-Duarte M A, Spasova M, et al. Adv. Funct. Mater.. 2006.16:509-514.
  • 9Peng J J', Liu S H, Wang L, et al. J. Colloid Interface Sci., 2009,338:578-583.
  • 10WANGXian.Xiang(王显祥),YANGZhong-Xe(杨中科),GUOMin(郭敏),et al. Chinese J. Inorg. Chem. (Wuji HuaxueXuebao), 2009,25(3):496-500.

同被引文献10

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部