期刊文献+

介孔SBA-15有机化修饰对PMMA杂化材料力学性能的影响

Organic modification of mesoporous SBA-15 and its effect on mechanical properties of PMMA hybrid materials
下载PDF
导出
摘要 采用硅烷偶联剂对SBA-15进行了有机化修饰(即:SBA-15-G),利用在位分散聚合法制备了SBA-15/PMMA和SBA-15-G/PMMA杂化材料,研究了SBA-15和SBA-15-G在PMMA基体中的介观有序性和分散性以及对杂化材料的力学性能的影响规律。结果表明有机化修饰使SBA-15孔容、孔径和比表面积减小,表面亲油性提高;SBA-15和SBA-15-G在基体中仍保持长程有序结构;有机化修饰改善了SBA-15在基体中的分散性和与基体的界面结合,显著增强了杂化材料的力学性能。当SBA-15-G为4%时,杂化材料的拉伸强度和模量分别提高了45%和40.4%,当SBA-15-G为2%时冲击强度达到最大,比基体提高了36.6%。, Silane coupling agent was added onto the mesoporous interior surface of SBA-15 via post-synthesis grafting and SBA-15-G was obtained.The SBA-15/PMMA and SBA-15-G/PMMA hybrid materials were prepared via in situ polymerization.The influences of silane coupling agent modification and content of SBA-15 on the mesoscopic orderliness,disperse properties and mechanical properties were investigated.The results revealed that SBA-15-G exhibited smaller pore volume,pore size and surface area,better lipophilicity,SBA-15 and SBA-15-G still maintained their long- range order in the matrix and the organic modification improved the dispersibility and the interface bonding to the matrix,so the mechanical properties of the hybrid materials were enhanced.The nano-porous channels of SBA-15 and SBA-15-G were not destroyed in hybrid materials.Compared with the matrix,the tensile strength and elasticity modulus of the hybrid materials were increased by 45% and 40.4%,respectively,when the mass fraction of SBA-15-G was 4%;the impact strength was the highest (increasing by 36.6%) when SBA-15-G was 2%.
出处 《粘接》 CAS 2012年第10期44-49,共6页 Adhesion
基金 西北工业大学研究生创业种子基金资助(z2012152)
关键词 介孔杂化材料 SBA-15 PMMA 硅烷偶联剂 力学性能 mesoporous composite SBA- 15 PMMA silane coupling agent mechanical property
  • 相关文献

参考文献9

  • 1Stein A,Melde B J,Schroden R C.Hybrid inorganic- organic mesoporous silicates-nanoscopic reactors coming of age [J] .Advanced Materials,2000,12(19):1403-1119.
  • 2Norihiro Suzuki,Shosuke Kiba,Yusuke Yamauchi.Low dielectric property of novel mesoporous silica/polymer composites using[J].Microporous and Mesoporous Materials,2011,138(1-3): 123-131.
  • 3J.-L.Shi,Z.-L.Hua,L.-X.Zhang.Nanocomposites from ordered mesoporous materials[J].Journal of Materials Chemistry,2004.14(5) :795 -806.
  • 4Park I,Pinnavaia T J.Mesocellular silica foam as an epoxy polymer reinforcing agent[J].Advanced Functional Materials,2007,17(15) :2835-2841.
  • 5Run M T,Wu S Z,Zhang D Y,et al.A polymer/ mesoporous molecular sieve composite:Preparation, structure and properties[J] .Materials Chemistry and Physics ,2007,105(2-3) :341-347.
  • 6Dongyuan Zhao,Jianglin Feng,Qisheng Huo,et al.Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores[J].Science,1998, 279(53 50):546-552.
  • 7Fa-Ai Zhang,Dong-Keun Lee,Thomas J.Pinnavaia. PMMA/mesoporous silica nanocomposites:effect of framework structure and pore size on thermomechanical properties[J] .Polymer Chemistry,2011 (1):107-113.
  • 8Fa-Ai Zhang,Cheng Song,Cai-Li Yu.Effects of preparation methods on the property of PMMA/SBA-15 mesoporous silica composites[J].Journal of Polymer Kesearch,2011,18(6):1757-1764.
  • 9王娜,李明天,张军旗,张劲松.MCM-41填加量与偶联修饰对复合材料拉伸性能的影响[J].复合材料学报,2005,22(2):27-33. 被引量:19

二级参考文献10

共引文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部