期刊文献+

针对基于广义逆的特大增量步算法的二维拓展

Application in 2D Solid Analysis of General Inverse Matrix-Based Large Increment Method
下载PDF
导出
摘要 为将特大增量步算法推广应用到二维实体分析上,提出了一种能适应特大增量步算法求解的二维4节点四边形单元.应用新单元的数值算例的结果表明,该单元在算法上收敛,对单元畸变不敏感,能用于特大增量步算法并可以利用在杆件结构系统类似的方法发挥并行计算的优势. To extend the application of large increment method(LIM) into 2D solid analyses,a 4-node quadrilateral element which adapts to LIM was proposed.Two numerical examples were solved using the new element.The mesh convergence and the insensitiveness to the mesh distortion are proved,and the advantage of parallel computation is implied.
出处 《上海交通大学学报》 EI CAS CSCD 北大核心 2012年第10期1686-1692,共7页 Journal of Shanghai Jiaotong University
基金 国家自然科学基金资助项目(10872128)
关键词 广义逆力法 特大增量步算法 有限元 四边形单元 general inverse force method large increment method finite element method quadrilateral element
  • 相关文献

参考文献22

  • 1GuoZ Y, Long D B, Liu X L, etal. A force-based large increment method for continuum elastoplastic problems [C] // Proceedings of 17th Association of Computational Mechanics in Engineering. Notting- ham: ACME-UK, 2009.
  • 2Zhang C J, Liu X L. A large increment method for material nonlinearity problems[J].Advances in Structural Engineering, 1997, 1 ( 2 ) : 99-109.
  • 3张春俊.材料非线性问题的特大增量步算法[D].北京:清华大学土木工程系,1996.
  • 4He Y, Xu J, Zhou A, etal. Local and parallel finite element algorithms for the stokes problem [J]. Nu- merische Mathematik, 2008, 109(3) : 415-434.
  • 5Tian Y, Wang C, Zhu D, etal. Finite element mod- eling of electron beam welding of a large complex Al alloy structure by parallel computations [J]. Journal of Materials Processing Technology, 2008,199 (1-3) : 41-48.
  • 6Wang W, Kosakowski G, Kolditz O. A parallel finite element scheme for thermo-hydro-mechanical (THM) coupled problems in porous media [J]. Computers & Geosciences, 2009, 35(8) : 1631-1641.
  • 7Takizawa K, Christopher J, Tezduyar T E, et al. Space-time finite element computation of arterial flu- id structure interactions with patient-specific data [J]. International Journal for Numerical Methods in Biomedical Engineering, 2010, 26(1): 101-116.
  • 8王开健,刘西拉,顾雷.基于MPI机群环境下的广义逆力法并行化初探[J].岩石力学与工程学报,2005,24(1):57-65. 被引量:3
  • 9刘西拉,龙丹冰.一种新颖的结构分析并行方法:特大增量步法[C]//首届工程设计高性能计算(HPC)技术应用论文集.上海:中国土木工程学会,2007:16-29.
  • 10Aguilera M K. , Yu H, Vaidya N H, et al. Distribu- ted computing and networking [M]. Berlin: Spring- er-Verlag, 2011.

二级参考文献20

  • 1张汝清.并行计算结构力学的发展和展望[J].力学进展,1994,24(4):511-517. 被引量:8
  • 2张汝清.概说并行计算结构力学[J].计算结构力学及其应用,1995,12(4):477-484. 被引量:9
  • 3刘磊,张光卿,袁长卿.杆系结构的高精度非线性分析[J].土木工程学报,2006,39(1):25-28. 被引量:8
  • 4FILIPPOU F C.Frame elements with force formulation in nonlinear analysis of structures[C]//Paper contribution in the volume in honor of 60th birthday of Professor Rolf Eligehausen.Stuttgart:University of Stuttgart,2002:1-11.
  • 5AREF A J,GUO Z.Framework for finite-element-based large increment method for nonlinear structural problems[J].Journal of Engineering Mechanics,2001,127(7):739-746.
  • 6BARHAM W,AREF A J,DARGUSH G F.Derivation and implementation of a flexibility-based large increment method for solving non-linear structural problems[C]//Proceedings of the Ninth International Conference on Civil and Structural Engineering Computing.Stirling:Civil-Comp Press,2003.
  • 7BEN I A,GREVILLE T.Generalized inverse:theory and application[M].New York:Wiley,1974.
  • 8Zhang C J, Liu X L. A large increment method for material nonlinearity problems [J]. Advances in Structural Engineering. 1997. 1(2):99-110.
  • 9Kaneko I, Lawo M, Thierauf G. On computational procedures for the force method [J]. J Numer Meth Engng, 1982. 18:1469-1495.
  • 10Patnaik S N. The variational energy formulation for the integrated force method [J]. AIAA, J, 1986, 24:129-137.

共引文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部