期刊文献+

SAR图像强回波目标检测的偏态分布方差方法

Partial Distribution Variance Algorithm for SAR Image Strong Echo Target Detection
下载PDF
导出
摘要 对复杂背景下的SAR图像强回波目标检测问题进行了研究,提出了基于偏态分布方差的自适应检测算法。首先设计一种新的基于偏态分布模型的方差滤波器,偏态分布方差滤波器可减少相干斑噪声对检测的不良影响,提高图像方差的差异性,即强目标回波边缘灰度方差相对于强目标回波灰度方差、背景杂波灰度方差更小。其次,算法改进了根据图像复杂度自动选取阈值方法,通过自适应检测小方差像素,实现强回波目标检测。仿真结果说明该算法能够对SAR图像强回波目标较快地进行准确检测。相比方差特征法(VAR)和扩展分形特征法(EF)在检测速度与虚警率方面均具有较大的优越性。 Target detection problem of strong echoes of SAR image in the complex background is studied and an adaptive target detection algorithm is presented based on partial distribution variance. First, a novel variance filter based on the partial distribution model is designed. The partial distribution variance filter can reduce negative impacts on detection and improve the diversity of image variance, i. e. , the variance of grayscale at the edge of target region is smaller than those in the target region and in the background. Second, the algorithm modifies the method of auto-selecting threshold based on the image complexity to detect strong echoes by detecting the small variance pixels. The simulation results show that the proposed algorithm can detect the strong echoes in SAR image more quickly and exactly, and it has a great advantage over the VAR algorithm and the EF algorithm in the aspects of efficiency and false alarm probability.
出处 《宇航学报》 EI CAS CSCD 北大核心 2012年第10期1498-1504,共7页 Journal of Astronautics
基金 国家自然科学基金(6120445 61179017) "泰山学者"建设工程专项经费资助
关键词 合成孔径雷达图像 目标检测 偏态分布模型 方差滤波器 SAR image Target detection Partial distribution model Variance filter
  • 相关文献

参考文献21

二级参考文献72

  • 1宦若虹,杨汝良.一种基于特征分类辨识的SAR图像目标检测方法[J].测绘学报,2009,38(4):324-329. 被引量:7
  • 2张翠,邹涛,王正志.一种高分辨率SAR图像快速目标检测算法[J].遥感学报,2005,9(1):45-49. 被引量:7
  • 3戴锋.含有安全性分析的多准则决策技术[J].运筹学杂志,1993,12(2):30-35. 被引量:6
  • 4Berizzi F, Bertini G, and Martorella M, et al.. Two- dimensional variation algorithm for fractal analysis of sea SAR images. IEEE Trans. on Geoscience and Remote Sensing 2006, 44(9): 2361-2373.
  • 5Martino G D, Iodice A, and Riccio D, et al.. A novel approach for disaster monitoring: fractal models and tools. IEEE Trans. on Geoscience and Remote Sensing, 2007, 45(6): 1559-1570.
  • 6Charalampidis D and Kasparis T. Wavelet-based rotational invariant roughness features for texture classification and segmentation. IEEE Trans. on Image Processing, 2002, 11(8): 825-837.
  • 7https://www.sdms.afrl.af.mil/request/data_request.php.
  • 8Kaplan L M, Murenzi R, and Namuduri K. Extended fractal feature for first stage SAR target detection. SPIE, 1999, Vol.3721: 35-46.
  • 9Kaplan L M. Improved SAR target detection via extended fractal features. IEEE Trans. on Aerospace and Electronic Systems, 2001, 37(2): 436-451.
  • 10Charalampidis D and Stein G W. Target detection based on multiresolution fractal analysis. SPIE proceedings, Signal Processing, Sensor Fusion, and Target Recognition XVI, April 2007, Vol.6567: 65671B-1-65671B-8.

共引文献72

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部